論文の概要: Generative Machine Learning in Adaptive Control of Dynamic Manufacturing Processes: A Review
- arxiv url: http://arxiv.org/abs/2505.00210v1
- Date: Wed, 30 Apr 2025 22:48:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.184639
- Title: Generative Machine Learning in Adaptive Control of Dynamic Manufacturing Processes: A Review
- Title(参考訳): 動的製造プロセスの適応制御における生成機械学習
- Authors: Suk Ki Lee, Hyunwoong Ko,
- Abstract要約: 本稿では、意思決定アプリケーション、プロセスガイダンス、シミュレーション、デジタルツインを通じて、生産制御のための生成機械学習の可能性を示す。
本稿では,生産システムの動的複雑さに対処するために,ジェネレーティブMLと制御技術を組み合わせた統合フレームワークの開発を目的とした今後の研究方向性を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dynamic manufacturing processes exhibit complex characteristics defined by time-varying parameters, nonlinear behaviors, and uncertainties. These characteristics require sophisticated in-situ monitoring techniques utilizing multimodal sensor data and adaptive control systems that can respond to real-time feedback while maintaining product quality. Recently, generative machine learning (ML) has emerged as a powerful tool for modeling complex distributions and generating synthetic data while handling these manufacturing uncertainties. However, adopting these generative technologies in dynamic manufacturing systems lacks a functional control-oriented perspective to translate their probabilistic understanding into actionable process controls while respecting constraints. This review presents a functional classification of Prediction-Based, Direct Policy, Quality Inference, and Knowledge-Integrated approaches, offering a perspective for understanding existing ML-enhanced control systems and incorporating generative ML. The analysis of generative ML architectures within this framework demonstrates control-relevant properties and potential to extend current ML-enhanced approaches where conventional methods prove insufficient. We show generative ML's potential for manufacturing control through decision-making applications, process guidance, simulation, and digital twins, while identifying critical research gaps: separation between generation and control functions, insufficient physical understanding of manufacturing phenomena, and challenges adapting models from other domains. To address these challenges, we propose future research directions aimed at developing integrated frameworks that combine generative ML and control technologies to address the dynamic complexities of modern manufacturing systems.
- Abstract(参考訳): 動的製造プロセスは、時間変化パラメータ、非線形挙動、不確実性によって定義される複雑な特性を示す。
これらの特徴は、製品品質を維持しながらリアルタイムフィードバックに反応できるマルチモーダルセンサデータと適応制御システムを利用した高度なその場監視技術を必要とする。
近年、複雑な分布をモデル化し、これらの製造不確実性に対処しながら合成データを生成するための強力なツールとして、生成機械学習(ML)が登場している。
しかし、これらの生成技術を動的製造システムに適用することは、それらの確率論的理解を制約を尊重しながら実行可能なプロセス制御に変換する機能的な制御指向の視点を欠いている。
本稿では、予測ベース、直接ポリシー、品質推論、知識統合アプローチを機能的に分類し、既存のML強化制御システムを理解し、生成MLを取り入れるための視点を提供する。
このフレームワーク内の生成MLアーキテクチャの解析は、従来の手法では不十分であった制御関連特性と、現在のML強化アプローチを拡張する可能性を示している。
本稿では、意思決定アプリケーション、プロセスガイダンス、シミュレーション、デジタルツインによる製造制御の可能性を示すとともに、生成と制御機能の分離、製造現象の物理的理解の欠如、他領域からのモデル適応の課題など、重要な研究ギャップを特定する。
これらの課題に対処するため、我々は、現代の製造システムの動的複雑さに対処するために、生成MLと制御技術を組み合わせた統合フレームワークの開発を目的とした将来の研究方向性を提案する。
関連論文リスト
- Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control [0.0]
本研究では, 深部強化学習(DRL)の枠組みを用いた新しいロバスト制御手法を提案する。
問題設定は、不確実性と非線形性を考慮した制御系に対して、バニラMDPの集合である潜在マルコフ決定プロセス(LMDP)を介してモデル化される。
従来のDRLベースの制御と比較して、提案するコントローラ設計はより賢く、高度な一般化能力を実現することができる。
論文 参考訳(メタデータ) (2025-04-28T12:09:07Z) - Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
我々は、構造化出力、プロセスの監督、テストタイム計算など、これまでの分野の進歩について論じる。
モジュール型かつ信頼性の高いLCMシステムの開発に向けた研究の今後の方向性について概説する。
論文 参考訳(メタデータ) (2024-11-25T07:48:31Z) - Unveiling LLM Mechanisms Through Neural ODEs and Control Theory [4.084134914321567]
本稿では,ニューラル正規微分方程式(Neural ODE)とロバスト制御理論を組み合わせて,大規模言語モデル(LLM)の解釈可能性と制御性を高める枠組みを提案する。
実験結果から、ニューラルODEと制御理論の統合は出力の一貫性とモデルの解釈可能性を大幅に向上させ、説明可能なAI技術の開発を前進させることが示された。
論文 参考訳(メタデータ) (2024-06-23T22:56:34Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
本稿では,特徴生成プロセスの解釈可能性を高める動的かつ適応的な特徴生成手法を提案する。
弊社のアプローチは、さまざまなデータタイプやタスクに適用可能性を広げ、戦略的柔軟性よりも優位性を引き出す。
論文 参考訳(メタデータ) (2024-06-04T20:32:14Z) - Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
本稿では、モデルとその推論の透明性と理解を高める機械学習(ML)の分野である、解釈可能な機械学習(IML)について検討する。
共有価値の原則とLarge Language Models(LLMs)のコンテキスト内学習機能を組み合わせた革新的なフレームワークを開発する。
本稿では,仮想テストベッドにおける需要応答イベント下での予測制御に基づく事前冷却モデルの実現可能性を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2024-02-14T21:19:33Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - Reduced Order Dynamical Models For Complex Dynamics in Manufacturing and
Natural Systems Using Machine Learning [0.0]
この研究は、機械学習(ML)アプローチを用いて製造と自然システムの低次モデルを開発する。
本手法はダイズ油からダイズ油までのプロセスプラントと湖沼システムで実証された。
以上の結果から, プロセスプラントの高精度線形ODEモデルを同定し, 基礎となる線形化学量測定機構と力学を駆動する質量収支を考察した。
論文 参考訳(メタデータ) (2021-10-15T18:44:27Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
パターンタイプと強度を組み合わせた機械学習に基づく指標のための新しいフレームワークを提案する。
半導体産業のケーススタディでは,従来のプロセス制御を越え,高品質な実験結果を得る。
論文 参考訳(メタデータ) (2021-03-24T10:13:20Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
機械学習(ML)を活用した,新しい完全データ駆動制御方式を提案する。
最近開発されたMLに基づく複雑なシステムの予測機能により、非線形系は任意の初期状態から来る任意の動的対象状態に留まることが証明された。
必要なデータ量が少なく,柔軟性の高いコントロールスキームを備えることで,工学から医学まで幅広い応用の可能性について簡単に議論する。
論文 参考訳(メタデータ) (2021-02-23T16:58:26Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。