Explorative Curriculum Learning for Strongly Correlated Electron Systems
- URL: http://arxiv.org/abs/2505.00233v1
- Date: Thu, 01 May 2025 00:46:52 GMT
- Title: Explorative Curriculum Learning for Strongly Correlated Electron Systems
- Authors: Kimihiro Yamazaki, Takuya Konishi, Yoshinobu Kawahara,
- Abstract summary: Recent advances in neural network quantum states (NQS) have enabled high-accuracy predictions for complex quantum many-body systems.<n>We propose a novel curriculum learning framework based on transfer learning for NQS.<n>We show an approximately 200-fold speedup in computation and a marked improvement in optimization stability compared to conventional methods.
- Score: 5.443662050302865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in neural network quantum states (NQS) have enabled high-accuracy predictions for complex quantum many-body systems such as strongly correlated electron systems. However, the computational cost remains prohibitive, making exploration of the diverse parameters of interaction strengths and other physical parameters inefficient. While transfer learning has been proposed to mitigate this challenge, achieving generalization to large-scale systems and diverse parameter regimes remains difficult. To address this limitation, we propose a novel curriculum learning framework based on transfer learning for NQS. This facilitates efficient and stable exploration across a vast parameter space of quantum many-body systems. In addition, by interpreting NQS transfer learning through a perturbative lens, we demonstrate how prior physical knowledge can be flexibly incorporated into the curriculum learning process. We also propose Pairing-Net, an architecture to practically implement this strategy for strongly correlated electron systems, and empirically verify its effectiveness. Our results show an approximately 200-fold speedup in computation and a marked improvement in optimization stability compared to conventional methods.
Related papers
- Evaluating Parameter-Based Training Performance of Neural Networks and Variational Quantum Circuits [43.528848176938844]
Variational quantum circuits (VQCs) offer a promising alternative to neural networks (NNs)<n>VQCs leverage quantum mechanics to capture intricate relationships and typically need fewer parameters.<n>We show that VQCs can match NNs in performance while using significantly fewer parameters, despite longer training durations.
arXiv Detail & Related papers (2025-04-09T21:00:41Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
We develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation.<n>We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory.<n>These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
arXiv Detail & Related papers (2025-03-28T04:43:24Z) - Representation Learning with Parameterised Quantum Circuits for Advancing Speech Emotion Recognition [37.98283871637917]
Speech Emotion Recognition (SER) is a complex task in human-computer interaction due to the intricate dependencies of features and the overlapping nature of emotional expressions conveyed through speech.<n>This paper introduces a hybrid classical-quantum framework that integrates volutionised Quantum Circuits with conventional Conal Neural Network (CNN) architectures.<n>By leveraging quantum properties such as superposition and entanglement, the proposed model enhances feature representation and captures complex dependencies more effectively than classical methods.
arXiv Detail & Related papers (2025-01-21T11:23:38Z) - Regression and Classification with Single-Qubit Quantum Neural Networks [0.0]
We use a resource-efficient and scalable Single-Qubit Quantum Neural Network (SQQNN) for both regression and classification tasks.
For classification, we introduce a novel training method inspired by the Taylor series, which can efficiently find a global minimum in a single step.
The SQQNN exhibits virtually error-free and strong performance in regression and classification tasks, including the MNIST dataset.
arXiv Detail & Related papers (2024-12-12T17:35:36Z) - FL-QDSNNs: Federated Learning with Quantum Dynamic Spiking Neural Networks [4.635820333232683]
This paper introduces the Federated Learning-Quantum Dynamic Spiking Neural Networks (FL-QDSNNs) framework.<n>Central to our framework is a novel dynamic threshold mechanism for activating quantum gates in Quantum Spiking Neural Networks (QSNNs)<n>Our FL-QDSNNs framework has demonstrated superior accuracies-up to 94% on the Iris dataset and markedly outperforms existing Quantum Federated Learning (QFL) approaches.
arXiv Detail & Related papers (2024-12-03T09:08:33Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.<n>We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.<n>Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Evolutionary-enhanced quantum supervised learning model [0.0]
This study proposes an evolutionary-enhanced ansatz-free supervised learning model.
In contrast to parametrized circuits, our model employs circuits with variable topology that evolves through an elitist method.
Our framework successfully avoids barren plateaus, resulting in enhanced model accuracy.
arXiv Detail & Related papers (2023-11-14T11:08:47Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.