Multi-start Optimization Method via Scalarization based on Target Point-based Tchebycheff Distance for Multi-objective Optimization
- URL: http://arxiv.org/abs/2505.00251v1
- Date: Thu, 01 May 2025 02:27:25 GMT
- Title: Multi-start Optimization Method via Scalarization based on Target Point-based Tchebycheff Distance for Multi-objective Optimization
- Authors: Kota Nagakane, Masahiro Nomura, Isao Ono,
- Abstract summary: Multi-objective optimization is crucial in scientific and industrial applications where solutions must balance trade-offs among conflicting objectives.<n>State-of-the-art methods, such as NSGA-III and MOEA/D, can handle many objectives but struggle with coverage issues.<n>We propose a novel multi-start optimization method that addresses these challenges.
- Score: 2.9248680865344348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-objective optimization is crucial in scientific and industrial applications where solutions must balance trade-offs among conflicting objectives. State-of-the-art methods, such as NSGA-III and MOEA/D, can handle many objectives but struggle with coverage issues, particularly in cases involving inverted triangular Pareto fronts or strong nonlinearity. Moreover, NSGA-III often relies on simulated binary crossover, which deteriorates in problems with variable dependencies. In this study, we propose a novel multi-start optimization method that addresses these challenges. Our approach introduces a newly introduced scalarization technique, the Target Point-based Tchebycheff Distance (TPTD) method, which significantly improves coverage on problems with inverted triangular Pareto fronts. For efficient multi-start optimization, TPTD leverages a target point defined in the objective space, which plays a critical role in shaping the scalarized function. The position of the target point is adaptively determined according to the shape of the Pareto front, ensuring improvement in coverage. Furthermore, the flexibility of this scalarization allows seamless integration with powerful single-objective optimization methods, such as natural evolution strategies, to efficiently handle variable dependencies. Experimental results on benchmark problems, including those with inverted triangular Pareto fronts, demonstrate that our method outperforms NSGA-II, NSGA-III, and MOEA/D-DE in terms of the Hypervolume indicator. Notably, our approach achieves computational efficiency improvements of up to 474 times over these baselines.
Related papers
- Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
We propose a preference-guided diffusion model for offline multi-objective optimization.<n>Our guidance is a preference model trained to predict the probability that one design dominates another.<n>Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions.
arXiv Detail & Related papers (2025-03-21T16:49:38Z) - Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
We propose a smooth variant of the min-max problem based on the augmented Lagrangian.<n>The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
arXiv Detail & Related papers (2025-03-16T11:05:51Z) - Continual Optimization with Symmetry Teleportation for Multi-Task Learning [73.28772872740744]
Multi-task learning (MTL) enables the simultaneous learning of multiple tasks using a single model.<n>We propose a novel approach based on Continual Optimization with Symmetry Teleportation (COST)<n>COST seeks an alternative loss-equivalent point on the loss landscape to reduce conflict gradients.
arXiv Detail & Related papers (2025-03-06T02:58:09Z) - A RankNet-Inspired Surrogate-Assisted Hybrid Metaheuristic for Expensive Coverage Optimization [5.757318591302855]
We propose a RankNet-Inspired Surrogate-assisted Hybrid Metaheuristic to handle large-scale coverage optimization tasks.<n>Our algorithm consistently outperforms state-of-the-art algorithms for EMVOPs.
arXiv Detail & Related papers (2025-01-13T14:49:05Z) - Structure-Based Molecule Optimization via Gradient-Guided Bayesian Update [16.743187639189976]
Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets.
MolJO is the first gradient-based SBMO framework that facilitates joint guidance signals across different modalities.
MolJO achieves state-of-the-art performance on CrossDocked 2020 benchmark.
arXiv Detail & Related papers (2024-11-20T12:48:29Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
We present a novel Bayesian optimization framework specifically tailored to address the limitations of BO.
Our key contribution is a highly scalable, sample-based acquisition function that performs a non-dominated sorting of objectives.
We show that our acquisition function in combination with different Bayesian neural network surrogates is effective in data-intensive environments with a minimal number of iterations.
arXiv Detail & Related papers (2023-06-01T19:10:57Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
We develop an effective evolutionary algorithm (E3A) that can handle various many-objective problems.
In E3A, inspired by SDE, a novel population maintenance method is proposed.
We conduct extensive experiments and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms.
arXiv Detail & Related papers (2022-05-31T15:35:46Z) - Efficient Global Optimization of Non-differentiable, Symmetric
Objectives for Multi Camera Placement [0.0]
We propose a novel iterative method for optimally placing and orienting multiple cameras in a 3D scene.
Sample applications include improving the accuracy of 3D reconstruction, maximizing the covered area for surveillance, or improving the coverage in multi-viewpoint pedestrian tracking.
arXiv Detail & Related papers (2021-03-20T17:01:15Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.