論文の概要: Modeling driver's evasive behavior during safety-critical lane
changes:Two-dimensional time-to-collision and deep reinforcement learning
- arxiv url: http://arxiv.org/abs/2209.15133v1
- Date: Thu, 29 Sep 2022 23:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 15:33:19.579355
- Title: Modeling driver's evasive behavior during safety-critical lane
changes:Two-dimensional time-to-collision and deep reinforcement learning
- Title(参考訳): 安全クリティカルレーン変更時の運転者の回避行動のモデル化:2次元時間対衝突と深部強化学習
- Authors: Hongyu Guo, Kun Xie and Mehdi Keyvan-Ekbatani
- Abstract要約: 本研究の目的は,車線変更に伴う回避行動モデルの開発である。
安全に配慮した交通シミュレーションと予測衝突回避システムの開発を容易にする。
- 参考スコア(独自算出の注目度): 19.649145869208617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane changes are complex driving behaviors and frequently involve
safety-critical situations. This study aims to develop a lane-change-related
evasive behavior model, which can facilitate the development of safety-aware
traffic simulations and predictive collision avoidance systems. Large-scale
connected vehicle data from the Safety Pilot Model Deployment (SPMD) program
were used for this study. A new surrogate safety measure, two-dimensional
time-to-collision (2D-TTC), was proposed to identify the safety-critical
situations during lane changes. The validity of 2D-TTC was confirmed by showing
a high correlation between the detected conflict risks and the archived
crashes. A deep deterministic policy gradient (DDPG) algorithm, which could
learn the sequential decision-making process over continuous action spaces, was
used to model the evasive behaviors in the identified safety-critical
situations. The results showed the superiority of the proposed model in
replicating both the longitudinal and lateral evasive behaviors.
- Abstract(参考訳): 車線変更は複雑な運転行動であり、しばしば安全クリティカルな状況を伴う。
本研究の目的は,交通シミュレーションや衝突回避システムの開発を容易にする車線変更関連回避行動モデルを開発することである。
本研究には安全パイロットモデル展開(SPMD)プログラムからの大規模連結車両データを用いた。
2d-ttc (2-dimensional time-to-collision) という新しいサロゲート安全対策が提案されている。
2d-ttcの有効性は,検出されたコンフリクトリスクとアーカイブされたクラッシュとの間に高い相関関係を示した。
連続的な行動空間上の逐次決定過程を学習するディープ決定論的ポリシー勾配(DDPG)アルゴリズムは、特定された安全クリティカルな状況における回避行動のモデル化に用いられた。
その結果, 縦方向と横方向の両方の回避行動の再現において, 提案モデルの優位性を示した。
関連論文リスト
- Control-ITRA: Controlling the Behavior of a Driving Model [14.31198056147624]
エージェントの動作に影響を与える制御ITRAと呼ばれる手法を,ウェイポイントの割り当てと目標速度の変調によって導入する。
本手法は, 可制御性, 無屈折性トラジェクトリを生成できると同時に, 視界と見えない位置の両方でリアリズムを保ち得ることを示す。
論文 参考訳(メタデータ) (2025-01-17T03:35:11Z) - Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections [9.041849642602626]
本研究では,動的高次制御バリア関数(DHOCBF)と拡散モデル(DSC-Diffuser)を統合する安全クリティカルプランニング手法を提案する。
提案手法は目標指向のタスク誘導拡散モデルを導入し,実世界のデータから複数のタスクを同時に学習することを可能にする。
論文 参考訳(メタデータ) (2024-11-29T11:57:00Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - A Memory-Augmented Multi-Task Collaborative Framework for Unsupervised
Traffic Accident Detection in Driving Videos [22.553356096143734]
本稿では,運転ビデオにおける教師なし交通事故検出のためのメモリ拡張型マルチタスク協調フレームワーク(MAMTCF)を提案する。
映像フレームの外観変化と物体の動きを同時にモデル化することにより,エゴ関連事故と非エゴ関連事故の両方をより正確に検出することができる。
論文 参考訳(メタデータ) (2023-07-27T01:45:13Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - Driving-Policy Adaptive Safeguard for Autonomous Vehicles Using
Reinforcement Learning [19.71676985220504]
本稿では,衝突回避戦略とアクティベーション機能を含むDPAS設計を提案する。
運転政策適応型アクティベーション機能は、緊急脅威が検出された場合に、現在の運転方針リスクを動的に評価し、起動する必要がある。
実験の結果は自然発生運転データにより校正され, より多くの介入を伴わずに, 衝突速度を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-12-02T08:01:53Z) - Provably Safe PAC-MDP Exploration Using Analogies [87.41775218021044]
安全クリティカルドメインに強化学習を適用する上での課題は、探索と安全性のバランスをとる方法を理解することだ。
我々は,未知のダイナミックスを持つMDPにおいて,確実に安全な探索を行うアルゴリズムであるAnalogous Safe-State Exploration (ASE)を提案する。
提案手法は, PAC-MDP 感覚の準最適政策を安全に学習するために, 状態-作用対間の類似性を利用する。
論文 参考訳(メタデータ) (2020-07-07T15:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。