論文の概要: KnowEEG: Explainable Knowledge Driven EEG Classification
- arxiv url: http://arxiv.org/abs/2505.00541v1
- Date: Thu, 01 May 2025 14:05:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.322091
- Title: KnowEEG: Explainable Knowledge Driven EEG Classification
- Title(参考訳): KnowEEG: 説明可能な知識駆動型脳波分類
- Authors: Amarpal Sahota, Navid Mohammadi Foumani, Raul Santos-Rodriguez, Zahraa S. Abdallah,
- Abstract要約: KnowEEGは、EEG分類のための機械学習アプローチである。
理解可能な機能のための特徴重要度スコアを通じて、本質的な説明性を提供します。
医療などの脳波説明可能性が重要である領域では、KnowEEGの影響が重要である。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) is a method of recording brain activity that shows significant promise in applications ranging from disease classification to emotion detection and brain-computer interfaces. Recent advances in deep learning have improved EEG classification performance yet model explainability remains an issue. To address this key limitation of explainability we introduce KnowEEG; a novel explainable machine learning approach for EEG classification. KnowEEG extracts a comprehensive set of per-electrode features, filters them using statistical tests, and integrates between-electrode connectivity statistics. These features are then input to our modified Random Forest model (Fusion Forest) that balances per electrode statistics with between electrode connectivity features in growing the trees of the forest. By incorporating knowledge from both the generalized time-series and EEG-specific domains, KnowEEG achieves performance comparable to or exceeding state-of-the-art deep learning models across five different classification tasks: emotion detection, mental workload classification, eyes open/closed detection, abnormal EEG classification, and event detection. In addition to high performance, KnowEEG provides inherent explainability through feature importance scores for understandable features. We demonstrate by example on the eyes closed/open classification task that this explainability can be used to discover knowledge about the classes. This discovered knowledge for eyes open/closed classification was proven to be correct by current neuroscience literature. Therefore, the impact of KnowEEG will be significant for domains where EEG explainability is critical such as healthcare.
- Abstract(参考訳): 脳波(Electroencephalography)は、疾患分類から感情検出、脳とコンピュータのインターフェイスに至るまで、脳の活動を記録する方法である。
近年の深層学習の進歩により脳波の分類性能は向上しているが、モデル説明可能性には問題がある。
この説明可能性の鍵となる限界に対処するために、脳波分類のための新しい説明可能な機械学習アプローチであるKnowEEGを紹介する。
KnowEEGは、電界当たりの機能の包括的なセットを抽出し、統計的テストを使用してそれらをフィルタリングし、電界間の接続統計を統合する。
これらの特徴は、我々の修正されたランダムフォレストモデル(フュージョンフォレスト)に入力されます。
一般化された時系列ドメインとEEG固有のドメインの両方から知識を取り入れることで、KnowEEGは、感情検出、メンタルワークロード分類、目開き/閉じた検出、異常な脳波分類、イベント検出という5つの異なる分類タスクにおいて、最先端のディープラーニングモデルに匹敵する、あるいは超えるパフォーマンスを達成する。
ハイパフォーマンスに加えて、KnowEEGは、理解可能な機能のための機能重要度スコアを通じて、固有の説明可能性を提供します。
この説明可能性を利用して、クラスに関する知識を発見できることを実例で示す。
この発見は、現在の神経科学文献によって、目開き/閉ざされた分類の知識が正しいことが証明された。
したがって、医療などの脳波説明可能性が重要である領域では、KnowEEGの影響が重要である。
関連論文リスト
- Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
本研究は,脳波の特徴推定に新たなアプローチを導入し,深層学習モデルの重みを利用してその関連を探索する。
視覚変換器とEEGNetから生成したアテンションマップは,従来の研究結果と一致した特徴を効果的に同定できることを実証する。
ViTsを用いたMel-Spectrogramの適用により、時間および周波数関連脳波特性の分解能が向上する。
論文 参考訳(メタデータ) (2024-09-27T22:52:31Z) - A Supervised Information Enhanced Multi-Granularity Contrastive Learning Framework for EEG Based Emotion Recognition [14.199298112101802]
本研究では,脳波に基づく感情認識(SICLEER, Supervised Info-enhanced Contrastive Learning)のための新しいコントラスト学習フレームワークを提案する。
自己教師付きコントラスト学習損失と教師付き分類損失を組み合わせた共同学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T11:51:00Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
我々は,新しい畳み込みニューラルネットワークと解釈手法を組み合わせることで,分類の重要な特徴のサンプルワイズ分析を可能にする。
その結果,11名の被験者に対して平均78.35%の精度が得られた。
論文 参考訳(メタデータ) (2021-05-30T14:47:20Z) - A Compact and Interpretable Convolutional Neural Network for
Cross-Subject Driver Drowsiness Detection from Single-Channel EEG [4.963467827017178]
本稿では,ドライバの眠気検出のために,複数の被験者間で共有された脳波特徴を検出するための,コンパクトで解釈可能な畳み込みニューラルネットワークを提案する。
その結果,脳波信号の分類では,被験者11名に対して平均73.22%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-30T14:36:34Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
脳波(EEG)信号に基づく脳-コンピュータインタフェース(BCI)が注目されている。
運動画像(MI)データは、リハビリテーションや自律運転のシナリオに使用することができる。
脳波に基づくBCIシステムにはMI信号の分類が不可欠である。
論文 参考訳(メタデータ) (2020-03-03T02:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。