Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
- URL: http://arxiv.org/abs/2505.00574v1
- Date: Thu, 01 May 2025 15:01:02 GMT
- Title: Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
- Authors: Raffaele Cheula, Mie Andersen,
- Abstract summary: We propose a machine learning (ML) model for predicting transition state (TS) energies based on Gaussian process regression.<n>Applying the model to predict TS energies for the reverse water-gas shift (RWGS) reaction on single-atom alloy catalysts, we show it can significantly improve the accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining accurate transition state (TS) energies is a bottleneck in computational screening of complex materials and reaction networks due to the high cost of TS search methods and first-principles methods such as density functional theory (DFT). Here we propose a machine learning (ML) model for predicting TS energies based on Gaussian process regression with the Wasserstein Weisfeiler-Lehman graph kernel (WWL-GPR). Applying the model to predict adsorption and TS energies for the reverse water-gas shift (RWGS) reaction on single-atom alloy (SAA) catalysts, we show that it can significantly improve the accuracy compared to traditional approaches based on scaling relations or ML models without a graph representation. Further benefitting from the low cost of model training, we train an ensemble of WWL-GPR models to obtain uncertainties through subsampling of the training data and show how these uncertainties propagate to turnover frequency (TOF) predictions through the construction of an ensemble of microkinetic models. Comparing the errors in model-based vs DFT-based TOF predictions, we show that the WWL-GPR model reduces errors by almost an order of magnitude compared to scaling relations. This demonstrates the critical impact of accurate energy predictions on catalytic activity estimation. Finally, we apply our model to screen new materials, identifying promising catalysts for RWGS. This work highlights the power of combining advanced ML techniques with DFT and microkinetic modeling for screening catalysts for complex reactions like RWGS, providing a robust framework for future catalyst design.
Related papers
- Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems [11.085215676429858]
We create a scalable model for Density Functional Theory calculations with physical accuracy.<n>We show it achieves a reduction in total energy prediction error by a factor of 1347 and an SCF calculation speed-up by a factor of 18%.
arXiv Detail & Related papers (2025-02-26T15:36:25Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - DR-Label: Improving GNN Models for Catalysis Systems by Label
Deconstruction and Reconstruction [72.20024514713633]
We present a novel graph neural network (GNN) supervision and prediction strategy DR-Label.
The strategy enhances the supervision signal, reduces the multiplicity of solutions in edge representation, and encourages the model to provide node predictions robust.
DR-Label was applied to three radically distinct models, each of which displayed consistent performance enhancements.
arXiv Detail & Related papers (2023-03-06T04:01:28Z) - Clarifying Trust of Materials Property Predictions using Neural Networks
with Distribution-Specific Uncertainty Quantification [16.36620228609086]
Uncertainty (UQ) methods allow estimation of the trustworthiness of machine learning (ML) model predictions.
Here, we investigate different UQ methods applied to predict energies of molecules on alloys from the Open Catalyst 2020 dataset.
Evidential regression is demonstrated to be a powerful approach for rapidly obtaining, competitively trustworthy UQ estimates.
arXiv Detail & Related papers (2023-02-06T07:03:02Z) - NeuralNEB -- Neural Networks can find Reaction Paths Fast [7.7365628406567675]
Quantum mechanical methods like Density Functional Theory (DFT) are used with great success alongside efficient search algorithms for studying kinetics of reactive systems.
Machine Learning (ML) models have turned out to be excellent emulators of small molecule DFT calculations and could possibly replace DFT in such tasks.
In this paper we train state of the art equivariant Graph Neural Network (GNN)-based models on around 10.000 elementary reactions from the Transition1x dataset.
arXiv Detail & Related papers (2022-07-20T15:29:45Z) - Efficient Remote Photoplethysmography with Temporal Derivative Modules
and Time-Shift Invariant Loss [6.381149074212898]
We present a lightweight neural model for remote heart rate estimation.
We focus on the efficient-temporal learning of facial photoplethysmography.
Compared to existing models, our approach shows competitive accuracy with a much lower number of parameters and lower computational cost.
arXiv Detail & Related papers (2022-03-21T11:08:06Z) - Machine learning models predict calculation outcomes with the
transferability necessary for computational catalysis [0.4063872661554894]
Virtual high throughput screening (VHTS) and machine learning (ML) have greatly accelerated the design of single-site transition-metal catalysts.
We show that a convolutional neural network that monitors geometry optimization on the fly can exploit its good performance and transferability for catalyst design.
We rationalize this superior model transferability to the use of on-the-fly electronic structure and geometric information generated from density functional theory calculations.
arXiv Detail & Related papers (2022-03-02T18:02:12Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.