Detection and Classification of Diseases in Multi-Crop Leaves using LSTM and CNN Models
- URL: http://arxiv.org/abs/2505.00741v1
- Date: Wed, 30 Apr 2025 02:36:51 GMT
- Title: Detection and Classification of Diseases in Multi-Crop Leaves using LSTM and CNN Models
- Authors: Srinivas Kanakala, Sneha Ningappa,
- Abstract summary: Plant diseases pose a serious challenge to agriculture by reducing crop yield and affecting food quality.<n>This study applies Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models to classify plant leaf diseases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plant diseases pose a serious challenge to agriculture by reducing crop yield and affecting food quality. Early detection and classification of these diseases are essential for minimising losses and improving crop management practices. This study applies Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models to classify plant leaf diseases using a dataset containing 70,295 training images and 17,572 validation images across 38 disease classes. The CNN model was trained using the Adam optimiser with a learning rate of 0.0001 and categorical cross-entropy as the loss function. After 10 training epochs, the model achieved a training accuracy of 99.1% and a validation accuracy of 96.4%. The LSTM model reached a validation accuracy of 93.43%. Performance was evaluated using precision, recall, F1-score, and confusion matrix, confirming the reliability of the CNN-based approach. The results suggest that deep learning models, particularly CNN, enable an effective solution for accurate and scalable plant disease classification, supporting practical applications in agricultural monitoring.
Related papers
- Automatic Cough Analysis for Non-Small Cell Lung Cancer Detection [33.37223681850477]
Early detection of non-small cell lung cancer (NSCLC) is critical for improving patient outcomes.<n>We explore the use of automatic cough analysis as a pre-screening tool for distinguishing between NSCLC patients and healthy controls.<n>Recordings were analyzed using machine learning techniques, such as support vector machine (SVM) and XGBoost.
arXiv Detail & Related papers (2025-07-25T11:30:22Z) - Automated Multi-Class Crop Pathology Classification via Convolutional Neural Networks: A Deep Learning Approach for Real-Time Precision Agriculture [0.0]
This research introduces a Convolutional Neural Network (CNN)-based image classification system designed to automate the detection and classification of eight common crop diseases.<n>The solution is deployed on an open-source, mobile-compatible platform, enabling real-time image-based diagnostics for farmers in remote areas.
arXiv Detail & Related papers (2025-07-12T18:45:50Z) - DExNet: Combining Observations of Domain Adapted Critics for Leaf Disease Classification with Limited Data [1.124958340749622]
This work proposes a few-shot learning framework, Domain-adapted Expert Network (DExNet), for plant disease classification.<n>It starts with extracting the feature embeddings as 'observations' from nine 'critics' that are state-of-the-art pre-trained CNN-based architectures.<n>The proposed pipeline is evaluated on the 10 classes of tomato leaf images from the PlantVillage dataset.
arXiv Detail & Related papers (2025-06-22T21:15:54Z) - Involution-Infused DenseNet with Two-Step Compression for Resource-Efficient Plant Disease Classification [0.0]
This study proposes a two-step model compression approach integrating Weight Pruning and Knowledge Distillation.<n>The results demonstrate ResNet50s superior performance post-compression, achieving 99.55% and 98.99% accuracy on the PlantVillage and PaddyLeaf datasets.
arXiv Detail & Related papers (2025-05-31T22:43:23Z) - Classifier Enhanced Deep Learning Model for Erythroblast Differentiation with Limited Data [0.08388591755871733]
Hematological disorders, which involve 1% of conditions and genetic diseases, present significant diagnostic challenges.
Our approach evaluates various machine learning settings offering efficacy of various machine variety learning (ML) models.
When data is available, the proposed solution is a solution for achieving higher accuracy for small and unique datasets.
arXiv Detail & Related papers (2024-11-23T15:51:15Z) - PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network [18.778641229886393]
This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
arXiv Detail & Related papers (2024-10-16T17:01:28Z) - A Comparative Study of Hybrid Models in Health Misinformation Text Classification [0.43695508295565777]
This study evaluates the effectiveness of machine learning (ML) and deep learning (DL) models in detecting COVID-19-related misinformation on online social networks (OSNs)
Our study concludes that DL and hybrid DL models are more effective than conventional ML algorithms for detecting COVID-19 misinformation on OSNs.
arXiv Detail & Related papers (2024-10-08T19:43:37Z) - Automated Disease Diagnosis in Pumpkin Plants Using Advanced CNN Models [0.0]
Pumpkin is a vital crop cultivated globally, and its productivity is crucial for food security, especially in developing regions.
Recent advancements in machine learning and deep learning offer promising solutions for automating and improving the accuracy of plant disease detection.
This paper presents a comprehensive analysis of state-of-the-art Convolutional Neural Network (CNN) models for classifying diseases in pumpkin plant leaves.
arXiv Detail & Related papers (2024-09-29T14:31:23Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Improving COVID-19 CT Classification of CNNs by Learning
Parameter-Efficient Representation [31.51725965329019]
Deep learning methods have been proposed to assist clinicians in automatic COVID-19 diagnosis based on computed tomography imaging.
DenseNet121 achieves an average test accuracy of 99.44% in three trials for three-category classification, including normal, non-COVID-19 pneumonia, and COVID-19 pneumonia.
arXiv Detail & Related papers (2022-08-09T12:24:53Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.