Preserving Privacy and Utility in LLM-Based Product Recommendations
- URL: http://arxiv.org/abs/2505.00951v1
- Date: Fri, 02 May 2025 01:54:08 GMT
- Title: Preserving Privacy and Utility in LLM-Based Product Recommendations
- Authors: Tina Khezresmaeilzadeh, Jiang Zhang, Dimitrios Andreadis, Konstantinos Psounis,
- Abstract summary: Large Language Model (LLM)-based recommendation systems leverage powerful language models to generate personalized suggestions.<n>This raises privacy concerns as user data is transmitted to remote servers, increasing the risk of exposure and reducing control over personal information.<n>We propose a hybrid privacy-preserving recommendation framework which separates sensitive from nonsensitive data and only shares the latter with the cloud.
- Score: 4.28766264863679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model (LLM)-based recommendation systems leverage powerful language models to generate personalized suggestions by processing user interactions and preferences. Unlike traditional recommendation systems that rely on structured data and collaborative filtering, LLM-based models process textual and contextual information, often using cloud-based infrastructure. This raises privacy concerns, as user data is transmitted to remote servers, increasing the risk of exposure and reducing control over personal information. To address this, we propose a hybrid privacy-preserving recommendation framework which separates sensitive from nonsensitive data and only shares the latter with the cloud to harness LLM-powered recommendations. To restore lost recommendations related to obfuscated sensitive data, we design a de-obfuscation module that reconstructs sensitive recommendations locally. Experiments on real-world e-commerce datasets show that our framework achieves almost the same recommendation utility with a system which shares all data with an LLM, while preserving privacy to a large extend. Compared to obfuscation-only techniques, our approach improves HR@10 scores and category distribution alignment, offering a better balance between privacy and recommendation quality. Furthermore, our method runs efficiently on consumer-grade hardware, making privacy-aware LLM-based recommendation systems practical for real-world use.
Related papers
- From Reviews to Dialogues: Active Synthesis for Zero-Shot LLM-based Conversational Recommender System [49.57258257916805]
Large Language Models (LLMs) demonstrate strong zero-shot recommendation capabilities.<n>Practical applications often favor smaller, internally managed recommender models due to scalability, interpretability, and data privacy constraints.<n>We propose an active data augmentation framework that synthesizes conversational training data by leveraging black-box LLMs guided by active learning techniques.
arXiv Detail & Related papers (2025-04-21T23:05:47Z) - A General Pseudonymization Framework for Cloud-Based LLMs: Replacing Privacy Information in Controlled Text Generation [0.6699777383856287]
ChatGPT services leverage cloud-based large language models (LLMs)<n>Privacy concerns arise as prompts are transmitted and processed by the model providers.<n>We propose a general pseudonymization framework applicable to cloud-based LLMs.
arXiv Detail & Related papers (2025-02-21T06:15:53Z) - The Application of Large Language Models in Recommendation Systems [0.0]
Large Language Models are powerful tools that enable recommendation frameworks to tap into unstructured data sources.<n>This work discusses applications of LLMs in recommendation systems, especially in electronic commerce, social media platforms, streaming services, and educational technologies.
arXiv Detail & Related papers (2025-01-04T04:02:23Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment [72.99676237703099]
We propose a new framework that boosts the alignment of large language models with human preferences.<n>Our key idea is leveraging the human prior knowledge within the small (seed) data.<n>We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.<n>We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - Shared MF: A privacy-preserving recommendation system [0.0]
This paper proposes a shared matrix factorization scheme called SharedMF.
First, a distributed recommendation system is built, and then secret sharing technology is used to protect the privacy of local data.
arXiv Detail & Related papers (2020-08-18T06:19:38Z) - Federating Recommendations Using Differentially Private Prototypes [16.29544153550663]
We propose a new federated approach to learning global and local private models for recommendation without collecting raw data.
By requiring only two rounds of communication, we both reduce the communication costs and avoid the excessive privacy loss.
We show local adaptation of the global model allows our method to outperform centralized matrix-factorization-based recommender system models.
arXiv Detail & Related papers (2020-03-01T22:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.