Exploring Equity of Climate Policies using Multi-Agent Multi-Objective Reinforcement Learning
- URL: http://arxiv.org/abs/2505.01115v1
- Date: Fri, 02 May 2025 08:52:56 GMT
- Title: Exploring Equity of Climate Policies using Multi-Agent Multi-Objective Reinforcement Learning
- Authors: Palok Biswas, Zuzanna Osika, Isidoro Tamassia, Adit Whorra, Jazmin Zatarain-Salazar, Jan Kwakkel, Frans A. Oliehoek, Pradeep K. Murukannaiah,
- Abstract summary: We introduce Justice, the first framework integrating Integrated Assessment Models with Multi-Objective Multi-Agent Reinforcement Learning.<n>By incorporating multiple objectives, Justice generates policy recommendations that shed light on equity while balancing climate and economic goals.
- Score: 8.711832374898187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Addressing climate change requires coordinated policy efforts of nations worldwide. These efforts are informed by scientific reports, which rely in part on Integrated Assessment Models (IAMs), prominent tools used to assess the economic impacts of climate policies. However, traditional IAMs optimize policies based on a single objective, limiting their ability to capture the trade-offs among economic growth, temperature goals, and climate justice. As a result, policy recommendations have been criticized for perpetuating inequalities, fueling disagreements during policy negotiations. We introduce Justice, the first framework integrating IAM with Multi-Objective Multi-Agent Reinforcement Learning (MOMARL). By incorporating multiple objectives, Justice generates policy recommendations that shed light on equity while balancing climate and economic goals. Further, using multiple agents can provide a realistic representation of the interactions among the diverse policy actors. We identify equitable Pareto-optimal policies using our framework, which facilitates deliberative decision-making by presenting policymakers with the inherent trade-offs in climate and economic policy.
Related papers
- Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis [5.738989367102034]
Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests.<n>We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations.
arXiv Detail & Related papers (2025-04-17T09:18:04Z) - Crafting desirable climate trajectories with RL explored socio-environmental simulations [3.554161433683967]
Integrated Assessment Models (IAMs) combine social, economic, and environmental simulations to forecast potential policy effects.
Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios.
We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations.
arXiv Detail & Related papers (2024-10-09T13:21:50Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
No global authority can ensure compliance with international climate agreements.
RICE-N supports modeling regional decision-making using AI agents.
The IAM then models the climate-economic impact of those decisions into the future.
arXiv Detail & Related papers (2023-07-10T20:05:42Z) - Subjective-objective policy making approach: Coupling of resident-values
multiple regression analysis with value-indices, multi-agent-based simulation [0.0]
This study proposes a new combined subjective-objective policy evaluation approach to choose better policy.
The proposed approach establishes a subjective target function based on a multiple regression analysis of the results of a residents questionnaire survey.
Using the new approach to compare several policies enables concrete expression of the will of stakeholders with diverse values.
arXiv Detail & Related papers (2023-06-14T02:33:32Z) - On the Value of Myopic Behavior in Policy Reuse [67.37788288093299]
Leveraging learned strategies in unfamiliar scenarios is fundamental to human intelligence.
In this work, we present a framework called Selective Myopic bEhavior Control(SMEC)
SMEC adaptively aggregates the sharable short-term behaviors of prior policies and the long-term behaviors of the task policy, leading to coordinated decisions.
arXiv Detail & Related papers (2023-05-28T03:59:37Z) - Well-being policy evaluation methodology based on WE pluralism [0.0]
This study shifts from pluralism based on objective indicators to conceptual pluralism that emphasizes subjective context.
By combining well-being and joint fact-finding on the narrow-wide WE consensus, the policy evaluation method is formulated.
arXiv Detail & Related papers (2023-05-08T06:51:43Z) - AI for Global Climate Cooperation: Modeling Global Climate Negotiations,
Agreements, and Long-Term Cooperation in RICE-N [75.67460895629348]
Achieving long-term cooperation on climate change mitigation with n strategic agents poses a complex game-theoretic problem.
We introduce RICE-N, a multi-region integrated assessment model that simulates the global climate and economy.
We describe how to use multi-agent reinforcement learning to train rational agents using RICE-N.
arXiv Detail & Related papers (2022-08-15T04:38:06Z) - Influencing Long-Term Behavior in Multiagent Reinforcement Learning [59.98329270954098]
We propose a principled framework for considering the limiting policies of other agents as the time approaches infinity.
Specifically, we develop a new optimization objective that maximizes each agent's average reward by directly accounting for the impact of its behavior on the limiting set of policies that other agents will take on.
Thanks to our farsighted evaluation, we demonstrate better long-term performance than state-of-the-art baselines in various domains.
arXiv Detail & Related papers (2022-03-07T17:32:35Z) - Learning Goal-oriented Dialogue Policy with Opposite Agent Awareness [116.804536884437]
We propose an opposite behavior aware framework for policy learning in goal-oriented dialogues.
We estimate the opposite agent's policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy.
arXiv Detail & Related papers (2020-04-21T03:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.