A Survey of Robotic Navigation and Manipulation with Physics Simulators in the Era of Embodied AI
- URL: http://arxiv.org/abs/2505.01458v1
- Date: Thu, 01 May 2025 09:22:23 GMT
- Title: A Survey of Robotic Navigation and Manipulation with Physics Simulators in the Era of Embodied AI
- Authors: Lik Hang Kenny Wong, Xueyang Kang, Kaixin Bai, Jianwei Zhang,
- Abstract summary: Navigation and manipulation are core capabilities in Embodied AI, yet training agents with these capabilities in the real world faces high costs and time complexity.<n>Sim-to-real transfer has emerged as a key approach, yet the sim-to-real gap persists.<n>This survey examines how physics simulators address this gap by analyzing their properties overlooked in previous surveys.
- Score: 3.3222579231365548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigation and manipulation are core capabilities in Embodied AI, yet training agents with these capabilities in the real world faces high costs and time complexity. Therefore, sim-to-real transfer has emerged as a key approach, yet the sim-to-real gap persists. This survey examines how physics simulators address this gap by analyzing their properties overlooked in previous surveys. We also analyze their features for navigation and manipulation tasks, along with hardware requirements. Additionally, we offer a resource with benchmark datasets, metrics, simulation platforms, and cutting-edge methods-such as world models and geometric equivariance-to help researchers select suitable tools while accounting for hardware constraints.
Related papers
- Physics-Learning AI Datamodel (PLAID) datasets: a collection of physics simulations for machine learning [0.15469999759898032]
PLAID is a framework for representing and sharing datasets of physics simulations.<n> PLAID defines a unified standard for describing simulation data.<n>We release six datasets under the PLAID standard, covering structural mechanics and computational fluid dynamics.
arXiv Detail & Related papers (2025-05-05T18:59:17Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data [7.214140640112874]
This paper addresses the task of extracting meaningful results in an automated manner from high dimensional data sets.
We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data.
We compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches.
arXiv Detail & Related papers (2021-03-11T09:28:00Z) - A Survey of Embodied AI: From Simulators to Research Tasks [13.923234397344487]
An emerging paradigm shift from the era of "internet AI" to "embodied AI"
This paper comprehensively surveys state-of-the-art embodied AI simulators and research.
arXiv Detail & Related papers (2021-03-08T17:31:19Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.