論文の概要: Automated Sentiment Classification and Topic Discovery in Large-Scale Social Media Streams
- arxiv url: http://arxiv.org/abs/2505.01883v1
- Date: Sat, 03 May 2025 18:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.318043
- Title: Automated Sentiment Classification and Topic Discovery in Large-Scale Social Media Streams
- Title(参考訳): 大規模ソーシャルメディアストリームにおける自動感性分類とトピック発見
- Authors: Yiwen Lu, Siheng Xiong, Zhaowei Li,
- Abstract要約: 本稿では,Twitterの言論の大規模感情分析とトピック分析のためのフレームワークを提案する。
私たちのパイプラインは、コンフリクト固有のキーワードを使用して、ターゲットデータ収集から始まります。
タイムスタンプ,位置情報,語彙内容などの情緒的特徴と文脈的特徴の関係について検討した。
- 参考スコア(独自算出の注目度): 3.5279571333221913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for large-scale sentiment and topic analysis of Twitter discourse. Our pipeline begins with targeted data collection using conflict-specific keywords, followed by automated sentiment labeling via multiple pre-trained models to improve annotation robustness. We examine the relationship between sentiment and contextual features such as timestamp, geolocation, and lexical content. To identify latent themes, we apply Latent Dirichlet Allocation (LDA) on partitioned subsets grouped by sentiment and metadata attributes. Finally, we develop an interactive visualization interface to support exploration of sentiment trends and topic distributions across time and regions. This work contributes a scalable methodology for social media analysis in dynamic geopolitical contexts.
- Abstract(参考訳): 本稿では,Twitterの言論の大規模感情分析とトピック分析のためのフレームワークを提案する。
パイプラインは、コンフリクト固有のキーワードを使用してターゲットデータ収集から始まり、その後、アノテーションの堅牢性を改善するために、複数の事前訓練されたモデルによる自動感情ラベルが続く。
タイムスタンプ,位置情報,語彙内容などの情緒的特徴と文脈的特徴の関係について検討した。
潜在テーマを特定するために、感情属性とメタデータ属性でグループ化された分割されたサブセットにLDA(Latent Dirichlet Allocation)を適用する。
最後に、時間と地域をまたいだ感情傾向や話題分布の探索を支援するインタラクティブな可視化インタフェースを開発する。
この研究は、動的地政学的文脈におけるソーシャルメディア分析のためのスケーラブルな方法論に寄与する。
関連論文リスト
- Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - Decoding Multilingual Topic Dynamics and Trend Identification through ARIMA Time Series Analysis on Social Networks: A Novel Data Translation Framework Enhanced by LDA/HDP Models [0.08246494848934444]
われわれは、コロナウイルスパンデミックの間、チュニジアのソーシャルネットワーク内での対話や、スポーツや政治などの有名なテーマに焦点を当てている。
まず、これらのテーマに関連するコメントの多言語コーパスを集約することから始めます。
次に、言語的差異に対処するために、ノー・イングリッシュ・トゥ・イングリッシュ・マシン翻訳手法を導入する。
論文 参考訳(メタデータ) (2024-03-18T00:01:10Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Contextual information integration for stance detection via
cross-attention [59.662413798388485]
スタンス検出は、著者の目標に対する姿勢を特定することを扱う。
既存のスタンス検出モデルの多くは、関連するコンテキスト情報を考慮していないため、制限されている。
文脈情報をテキストとして統合する手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T15:04:29Z) - Semantic Role Aware Correlation Transformer for Text to Video Retrieval [23.183653281610866]
本稿では,テキストや動画をオブジェクト,空間的コンテキスト,時間的コンテキストのセマンティックな役割へと明示的に切り離す新しいトランスフォーマーを提案する。
一般的なYouCook2の予備的な結果は、我々のアプローチが現在の最先端の手法を超越していることを示している。
論文 参考訳(メタデータ) (2022-06-26T11:28:03Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
クロスドメイン感情分類(CDSC)は、ソースドメインから学んだ伝達可能なセマンティクスを使用して、ラベルなしのターゲットドメインにおけるレビューの感情を予測することを目的としている。
本稿では、単語列と構文グラフの両方からドメイン不変セマンティクスを学習できる適応型構文グラフ埋め込み法であるグラフ適応意味伝達(GAST)モデルを提案する。
論文 参考訳(メタデータ) (2022-05-18T07:47:01Z) - SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural
Topic Models on Social Media Opinion Mining [0.07538606213726905]
意見マイニングにおける最近の研究は、単語埋め込みに基づくトピックモデリング手法を提案する。
そこで本稿では,SocialVisTUMを用いてソーシャルメディアのテキストに関連性のあるトピックモデルを表示する方法について述べる。
論文 参考訳(メタデータ) (2021-10-20T14:04:13Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep
Contextual Word Embeddings and Hierarchical Attention [4.742874328556818]
我々は、アスペクトベース感性分析(HAABSA)のための最先端のハイブリッドアプローチを2方向に拡張する。
まず、テキスト中の単語の意味をよりよく扱うために、文脈的でない単語埋め込みを文脈的でない単語埋め込みに置き換える。
次に、HAABSA高レベル表現に付加的な注意層を追加することにより、入力データのモデリングにおけるメソッドの柔軟性を向上させる。
論文 参考訳(メタデータ) (2020-04-18T17:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。