Deterministic Mechanical Wigner Negativity via Nonlinear Cavity Quantum Optomechanics in the Unresolved-Sideband Regime
- URL: http://arxiv.org/abs/2505.01942v1
- Date: Sat, 03 May 2025 22:46:45 GMT
- Title: Deterministic Mechanical Wigner Negativity via Nonlinear Cavity Quantum Optomechanics in the Unresolved-Sideband Regime
- Authors: Jack Clarke, Pascal Neveu, Ewold Verhagen, Michael R. Vanner,
- Abstract summary: Non-Gaussian quantum states of mechanical motion exhibiting Wigner negativity offer promising capabilities for quantum technologies and tests of fundamental physics.<n>We show that Wigner negativity can be prepared deterministically in the unresolved-sideband regime, without additional nonlinearities, nonclassical drives, or conditional measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Gaussian quantum states of mechanical motion exhibiting Wigner negativity offer promising capabilities for quantum technologies and tests of fundamental physics. Within the field of cavity quantum optomechanics, it is commonly held that deterministic preparation of mechanical Wigner negativity in the unresolved-sideband regime is not possible, as the intracavity interaction Hamiltonian is linear in mechanical position. Here, we show that, despite this, by accounting for the nonlinearity of the cavity response with mechanical position, mechanical Wigner negativity can be prepared deterministically in the unresolved-sideband regime, without additional nonlinearities, nonclassical drives, or conditional measurements. In particular, we find that Wigner negativity can be prepared with an optical pulse, even without single-photon strong coupling, and the negativity persists in the steady state of a continuously driven system. Our results deepen our understanding of cavity-enhanced radiation pressure and establish a pathway for deterministic preparation of nonclassical mechanical states in the unresolved sideband regime.
Related papers
- Optomechanical Backaction in the Bistable Regime [0.0]
We show that an intrinsic nonlinear cavity backaction cooling of a mechanical resonator is feasible operating deeply within the nonlinear regime of the cavity.
With our theory taking the nonlinearity into account, precise predictions on backaction cooling can be achieved even with a cavity beyond the bifurcation point.
arXiv Detail & Related papers (2024-06-06T16:17:50Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum Nonlinear Effect in Dissipatively Coupled Optomechanical System [2.662935297203738]
A full-quantum approach is used to study quantum nonlinear properties of a compound Michelson-Sagnac interferometer optomechanical system.
arXiv Detail & Related papers (2023-09-07T13:51:43Z) - Enhanced optomechanical nonlinearity through non-Markovian mechanical
noise [0.0]
We show that while the strength of the nonlinearity is generally reduced by a Markovian bath spectrum, it can be enhanced by constructing a bath with a highly non-Markovian structure.
The results have potential implications for future optomechanical experiments which seek to achieve a strong optomechanical nonlinearity.
arXiv Detail & Related papers (2023-08-02T12:54:01Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Quantum metrology with optomechanical systems in the nonlinear regime [0.0]
This thesis focuses on the description and application of nonlinear cavity optomechanical systems.
We derive a general expression of the quantum Fisher information given the extended optomechanical Hamiltonian.
Our results suggest that optomechanical systems could, in principle, be used as powerful quantum sensors.
arXiv Detail & Related papers (2020-03-25T21:53:03Z) - Beyond linear coupling in microwave optomechanics [0.0]
We analyze the results in the framework of an extended nonlinear optomechanical theory.
No thermo-optical instabilities are observed, in contrast with laser-driven systems.
We find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field.
arXiv Detail & Related papers (2020-03-06T13:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.