論文の概要: Ethical AI in the Healthcare Sector: Investigating Key Drivers of Adoption through the Multi-Dimensional Ethical AI Adoption Model (MEAAM)
- arxiv url: http://arxiv.org/abs/2505.02062v1
- Date: Sun, 04 May 2025 10:40:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.407832
- Title: Ethical AI in the Healthcare Sector: Investigating Key Drivers of Adoption through the Multi-Dimensional Ethical AI Adoption Model (MEAAM)
- Title(参考訳): 医療分野における倫理的AI:多次元倫理的AI導入モデル(MEAAM)による導入の鍵要因の調査
- Authors: Prathamesh Muzumdar, Apoorva Muley, Kuldeep Singh, Sumanth Cheemalapati,
- Abstract要約: 本稿では,多次元倫理AI導入モデル(MEAAM)を紹介する。
Ethical AI Fair AI、Responsible AI、Explainable AI、Sustainable AIの4つの基本次元の13の批判的倫理変数を分類する。
これらの倫理的構成が、オペレーショナルAI導入とシステミックAI導入の2つの結果に与える影響を調査する。
- 参考スコア(独自算出の注目度): 1.5458951336481048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adoption of Artificial Intelligence (AI) in the healthcare service industry presents numerous ethical challenges, yet current frameworks often fail to offer a comprehensive, empirical understanding of the multidimensional factors influencing ethical AI integration. Addressing this critical research gap, this study introduces the Multi-Dimensional Ethical AI Adoption Model (MEAAM), a novel theoretical framework that categorizes 13 critical ethical variables across four foundational dimensions of Ethical AI Fair AI, Responsible AI, Explainable AI, and Sustainable AI. These dimensions are further analyzed through three core ethical lenses: epistemic concerns (related to knowledge, transparency, and system trustworthiness), normative concerns (focused on justice, autonomy, dignity, and moral obligations), and overarching concerns (highlighting global, systemic, and long-term ethical implications). This study adopts a quantitative, cross-sectional research design using survey data collected from healthcare professionals and analyzed via Partial Least Squares Structural Equation Modeling (PLS-SEM). Employing PLS-SEM, this study empirically investigates the influence of these ethical constructs on two outcomes Operational AI Adoption and Systemic AI Adoption. Results indicate that normative concerns most significantly drive operational adoption decisions, while overarching concerns predominantly shape systemic adoption strategies and governance frameworks. Epistemic concerns play a facilitative role, enhancing the impact of ethical design principles on trust and transparency in AI systems. By validating the MEAAM framework, this research advances a holistic, actionable approach to ethical AI adoption in healthcare and provides critical insights for policymakers, technologists, and healthcare administrators striving to implement ethically grounded AI solutions.
- Abstract(参考訳): 医療サービス産業における人工知能(AI)の採用には多くの倫理的課題があるが、現在のフレームワークでは倫理的AI統合に影響を与える多次元的要因に関する包括的で実証的な理解が得られないことが多い。
この重要な研究ギャップに対処するため、この研究では、Ethical AI Fair AI、Responsible AI、Explainable AI、Sustainable AIの4つの基本次元にまたがる13の重要な倫理変数を分類する新しい理論フレームワークであるMulti-dimensional Ethical AI Adoption Model (MEAAM)を紹介した。
これらの次元は、認識的関心(知識、透明性、システムの信頼性に関するもの)、規範的関心(正義、自律性、尊厳、道徳的義務に焦点をあてるもの)、包括的な関心(世界的、体系的、長期的倫理的意味)という3つの中核的な倫理的レンズを通してさらに分析される。
本研究では,医療従事者から収集した調査データを用いて,部分最小方形構造方程式モデリング(PLS-SEM)を用いて分析した。
PLS-SEMを用いて、これらの倫理的構成が2つの結果に与える影響を実証的に調査する。
結果として、規範的な懸念は、運用上の採用決定を最も大きく引き起こす一方で、体系的な採用戦略とガバナンスフレームワークを主に形作っていることが示されています。
疫学的な懸念は、AIシステムの信頼と透明性に対する倫理的デザイン原則の影響を高める、促進的な役割を担っている。
MEAAMフレームワークを検証することで、この研究は、医療における倫理的AIの採用に対する全体論的かつ実用的なアプローチを推進し、倫理的に根ざしたAIソリューションの実現を目指す政策立案者、技術者、医療管理者に重要な洞察を提供する。
関連論文リスト
- Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
我々は、正義と公正、透明性、患者の同意と機密性、説明責任、患者中心で公平なケアの5つの重要な倫理的関心事に焦点を当てる。
この論文は、患者の信頼を維持する上でのバイアス、透明性の欠如、そして課題が、医療におけるAIアプリケーションの有効性と公正性を損なう可能性があるかを考察する。
論文 参考訳(メタデータ) (2024-11-18T00:52:22Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
このような機関におけるResponsible AI(RAI)の推進は、AI設計と開発に倫理的配慮を統合することの重要性の高まりを強調している。
本稿では,AI設計・開発に内在する倫理的リスクに対する意識と準備性を評価することを目的とする。
その結果、倫理的、責任的、包括的AIに関する知識ギャップが明らかとなり、利用可能なAI倫理フレームワークに対する認識が制限された。
論文 参考訳(メタデータ) (2023-12-15T06:40:27Z) - Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial
Intelligence [0.08192907805418582]
本研究では、異なる技術レベルでAIの実用性能に影響を与える主要な倫理的原則を特定することを試みる。
正義、プライバシー、偏見、規制の欠如、リスク、解釈可能性は倫理的AIを検討する上で最も重要な原則である。
本稿では,医療領域における倫理的AIを設計するための実用的倫理に基づく理論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-26T02:10:58Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
原則に基づく倫理保証議論パターンは、AI倫理のランドスケープにおける1つの提案である。
本稿では,AIベースの遠隔医療システムであるDoraの利用に対して,この倫理保証フレームワークを適用した事例研究の中間的結果を示す。
論文 参考訳(メタデータ) (2023-05-23T16:04:59Z) - AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers [8.82540441326446]
透明性、説明責任、プライバシは、AI倫理の最も重要な原則です。
倫理的知識の不足、法的枠組みの欠如、監視機関の欠如が、AI倫理の最も一般的な課題である。
論文 参考訳(メタデータ) (2022-06-30T17:24:29Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。