論文の概要: CSASN: A Multitask Attention-Based Framework for Heterogeneous Thyroid Carcinoma Classification in Ultrasound Images
- arxiv url: http://arxiv.org/abs/2505.02211v1
- Date: Sun, 04 May 2025 18:23:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.486378
- Title: CSASN: A Multitask Attention-Based Framework for Heterogeneous Thyroid Carcinoma Classification in Ultrasound Images
- Title(参考訳): CSASN:超音波画像における異種甲状腺癌分類のためのマルチタスク注意ベースフレームワーク
- Authors: Peiqi Li, Yincheng Gao, Renxing Li, Haojie Yang, Yunyun Liu, Boji Liu, Jiahui Ni, Ying Zhang, Yulu Wu, Xiaowei Fang, Lehang Guo, Liping Sun, Jiangang Chen,
- Abstract要約: 非均一な形態的特徴とデータ不均衡は、超音波画像を用いたまれな甲状腺癌の分類において重要な課題である。
本稿では,マルチタスク学習フレームワークであるChannel-Spatial Attention Synergy Network (CSASN)を提案する。
- 参考スコア(独自算出の注目度): 4.577163442985675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous morphological features and data imbalance pose significant challenges in rare thyroid carcinoma classification using ultrasound imaging. To address this issue, we propose a novel multitask learning framework, Channel-Spatial Attention Synergy Network (CSASN), which integrates a dual-branch feature extractor - combining EfficientNet for local spatial encoding and ViT for global semantic modeling, with a cascaded channel-spatial attention refinement module. A residual multiscale classifier and dynamically weighted loss function further enhance classification stability and accuracy. Trained on a multicenter dataset comprising more than 2000 patients from four clinical institutions, our framework leverages a residual multiscale classifier and dynamically weighted loss function to enhance classification stability and accuracy. Extensive ablation studies demonstrate that each module contributes significantly to model performance, particularly in recognizing rare subtypes such as FTC and MTC carcinomas. Experimental results show that CSASN outperforms existing single-stream CNN or Transformer-based models, achieving a superior balance between precision and recall under class-imbalanced conditions. This framework provides a promising strategy for AI-assisted thyroid cancer diagnosis.
- Abstract(参考訳): 非均一な形態的特徴とデータ不均衡は、超音波画像を用いたまれな甲状腺癌の分類において重要な課題である。
本稿では,局所空間符号化のためのEfficientNetとグローバルセマンティックモデリングのためのViTを組み合わせたマルチタスク学習フレームワークであるChannel-Spatial Attention Synergy Network (CSASN)を提案する。
残留多スケール分類器と動的重み付き損失関数により分類安定性と精度がさらに向上する。
4つの臨床施設から2000人以上の患者を対象とする多施設間データセットを用いて,残差型マルチスケール分類器と動的重み付き損失関数を活用し,分類安定性と精度を向上させる。
広範囲にわたるアブレーション研究により、各モジュールは、特にFTCやMCCなどの稀なサブタイプを認識する際に、モデル性能に著しく寄与することが示された。
実験の結果,CSASNは既存のシングルストリームCNNやトランスフォーマーベースモデルよりも優れており,クラス不均衡条件下での精度とリコールのバランスが優れていることがわかった。
このフレームワークは、AIによる甲状腺癌の診断に有望な戦略を提供する。
関連論文リスト
- HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
HDCと呼ばれる新しい半教師付きセグメンテーションフレームワークが提案されている。
この枠組みは,特徴表現の整合化のための相関誘導損失と,雑音の多い学生学習を安定化するための相互情報損失の2つの目的を持つ階層的蒸留機構を導入している。
論文 参考訳(メタデータ) (2025-04-14T04:52:24Z) - Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance [60.33892654669606]
拡散モデルは,必要な医用画像を合成するための強力な戦略である。
既存のアプローチはまだ、高周波情報の過度な適合による解剖学的構造歪みの問題に悩まされている。
本稿では,動的周波数バランスと知識指導に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2025-04-13T05:48:13Z) - Sparseformer: a Transferable Transformer with Multi-granularity Token Sparsification for Medical Time Series Classification [25.47662257105448]
MedTS分類用に特別に設計された変換器であるSparseformerを紹介する。
本稿では,大域的モデリングとトークン圧縮を実現するための,スパーストークンベースのデュアルアテンション機構を提案する。
我々のモデルは、教師あり学習下で7つの医療データセットで12のベースラインを上回ります。
論文 参考訳(メタデータ) (2025-03-19T13:22:42Z) - Towards a Multimodal MRI-Based Foundation Model for Multi-Level Feature Exploration in Segmentation, Molecular Subtyping, and Grading of Glioma [0.2796197251957244]
Multi-Task S-UNETR(MTSUNET)モデルはBrainSegFounderモデルに基づいて構築された新しい基盤ベースのフレームワークである。
同時にグリオーマのセグメンテーション、組織学的サブタイプ、神経画像サブタイプを行う。
非侵襲的, パーソナライズされたグリオーマ管理の進展には, 予測精度と解釈可能性を改善することにより有意な可能性を秘めている。
論文 参考訳(メタデータ) (2025-03-10T01:27:09Z) - UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORNは動脈硬化の重症度予測のための多段階組織学を処理できるマルチモーダルトランスフォーマーである。
このアーキテクチャは、2段階のエンドツーエンドのトレーニング可能なモデルと、トランスフォーマーの自己保持ブロックを利用する特殊なモジュールから構成される。
UNICORNは0.67の分類精度を達成し、他の最先端モデルを上回った。
論文 参考訳(メタデータ) (2024-09-26T12:13:52Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。