CSASN: A Multitask Attention-Based Framework for Heterogeneous Thyroid Carcinoma Classification in Ultrasound Images
- URL: http://arxiv.org/abs/2505.02211v1
- Date: Sun, 04 May 2025 18:23:03 GMT
- Title: CSASN: A Multitask Attention-Based Framework for Heterogeneous Thyroid Carcinoma Classification in Ultrasound Images
- Authors: Peiqi Li, Yincheng Gao, Renxing Li, Haojie Yang, Yunyun Liu, Boji Liu, Jiahui Ni, Ying Zhang, Yulu Wu, Xiaowei Fang, Lehang Guo, Liping Sun, Jiangang Chen,
- Abstract summary: Heterogeneous morphological features and data imbalance pose significant challenges in rare thyroid carcinoma classification using ultrasound imaging.<n>We propose a novel multitask learning framework, Channel-Spatial Attention Synergy Network (CSASN), which integrates a dual-branch feature extractor.
- Score: 4.577163442985675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous morphological features and data imbalance pose significant challenges in rare thyroid carcinoma classification using ultrasound imaging. To address this issue, we propose a novel multitask learning framework, Channel-Spatial Attention Synergy Network (CSASN), which integrates a dual-branch feature extractor - combining EfficientNet for local spatial encoding and ViT for global semantic modeling, with a cascaded channel-spatial attention refinement module. A residual multiscale classifier and dynamically weighted loss function further enhance classification stability and accuracy. Trained on a multicenter dataset comprising more than 2000 patients from four clinical institutions, our framework leverages a residual multiscale classifier and dynamically weighted loss function to enhance classification stability and accuracy. Extensive ablation studies demonstrate that each module contributes significantly to model performance, particularly in recognizing rare subtypes such as FTC and MTC carcinomas. Experimental results show that CSASN outperforms existing single-stream CNN or Transformer-based models, achieving a superior balance between precision and recall under class-imbalanced conditions. This framework provides a promising strategy for AI-assisted thyroid cancer diagnosis.
Related papers
- Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion [12.839049648094893]
coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD)<n>We propose a novel framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture.<n>The proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation.
arXiv Detail & Related papers (2025-07-17T09:25:00Z) - HMSViT: A Hierarchical Masked Self-Supervised Vision Transformer for Corneal Nerve Segmentation and Diabetic Neuropathy Diagnosis [3.8141400767898603]
Diabetic Peripheral Neuropathy (DPN) affects nearly half of diabetes patients, requiring early detection.<n>We propose HMSViT, a novel Hierarchical Masked Self-Supervised Vision Transformer (HMSViT)<n>HMSViT employs pooling-based hierarchical and dual attention mechanisms with absolute positional encoding, enabling efficient multi-scale feature extraction.<n> Experiments on clinical CCM datasets showed HMSViT achieves state-of-the-art performance, with 61.34% mIoU for nerve segmentation and 70.40% diagnostic accuracy.
arXiv Detail & Related papers (2025-06-24T10:00:23Z) - HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
A novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture.<n>The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning.
arXiv Detail & Related papers (2025-04-14T04:52:24Z) - Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance [60.33892654669606]
Diffusion model is a powerful strategy to synthesize the required medical images.<n>Existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information.<n>We propose a novel method based on dynamic frequency balance and knowledge guidance.
arXiv Detail & Related papers (2025-04-13T05:48:13Z) - Sparseformer: a Transferable Transformer with Multi-granularity Token Sparsification for Medical Time Series Classification [25.47662257105448]
We introduce Sparseformer, a transformer specifically designed for MedTS classification.<n>We propose a sparse token-based dual-attention mechanism that enables global modeling and token compression.<n>Our model outperforms 12 baselines across seven medical datasets under supervised learning.
arXiv Detail & Related papers (2025-03-19T13:22:42Z) - Towards a Multimodal MRI-Based Foundation Model for Multi-Level Feature Exploration in Segmentation, Molecular Subtyping, and Grading of Glioma [0.2796197251957244]
Multi-Task S-UNETR (MTSUNET) model is a novel foundation-based framework built on the BrainSegFounder model.<n>It simultaneously performs glioma segmentation, histological subtyping and neuroimaging subtyping.<n>It shows significant potential for advancing noninvasive, personalized glioma management by improving predictive accuracy and interpretability.
arXiv Detail & Related papers (2025-03-10T01:27:09Z) - UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORN is a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction.
The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks.
UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models.
arXiv Detail & Related papers (2024-09-26T12:13:52Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.