Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation
- URL: http://arxiv.org/abs/2505.02737v2
- Date: Tue, 06 May 2025 06:44:35 GMT
- Title: Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation
- Authors: Gerard Pons, Besim Bilalli, Anna Queralt,
- Abstract summary: We use Knowledge Graphs to enhance Large Language Models (LLMs) for zero-shot Entity Disambiguation (ED)<n>We leverage the hierarchical representation of the entities' classes in a KG to prune the candidate space as well as the entities' descriptions to enrich the input prompt with additional factual knowledge.<n>Our evaluation on popular ED datasets shows that the proposed method outperforms non-enhanced and description-only enhanced LLMs, and has a higher degree of adaptability than task-specific models.
- Score: 0.061446808540639365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have positioned them as a prominent solution for Natural Language Processing tasks. Notably, they can approach these problems in a zero or few-shot manner, thereby eliminating the need for training or fine-tuning task-specific models. However, LLMs face some challenges, including hallucination and the presence of outdated knowledge or missing information from specific domains in the training data. These problems cannot be easily solved by retraining the models with new data as it is a time-consuming and expensive process. To mitigate these issues, Knowledge Graphs (KGs) have been proposed as a structured external source of information to enrich LLMs. With this idea, in this work we use KGs to enhance LLMs for zero-shot Entity Disambiguation (ED). For that purpose, we leverage the hierarchical representation of the entities' classes in a KG to gradually prune the candidate space as well as the entities' descriptions to enrich the input prompt with additional factual knowledge. Our evaluation on popular ED datasets shows that the proposed method outperforms non-enhanced and description-only enhanced LLMs, and has a higher degree of adaptability than task-specific models. Furthermore, we conduct an error analysis and discuss the impact of the leveraged KG's semantic expressivity on the ED performance.
Related papers
- The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.<n>We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.<n>Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.<n>LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.<n>Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Finetuning Generative Large Language Models with Discrimination Instructions for Knowledge Graph Completion [18.905215900684187]
Traditional knowledge graph (KG) completion models learn embeddings to predict missing facts.
Recent works attempt to complete KGs in a text-generation manner with large language models (LLMs)
We present a finetuning framework, DIFT, aiming to unleash the KG completion ability of LLMs and avoid grounding errors.
arXiv Detail & Related papers (2024-07-23T02:25:01Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data [39.29778853025738]
Large Language Models (LLMs) have been achieving competent performance on a wide range of downstream tasks.
This paper proposes a framework, Learning to Reduce, that fine-tunes a language model with On-Policy Learning to generate a reduced version of an input structured data.
arXiv Detail & Related papers (2024-07-03T01:51:50Z) - RKLD: Reverse KL-Divergence-based Knowledge Distillation for Unlearning Personal Information in Large Language Models [23.91608718129775]
We propose RKLD, a novel textbfReverse textbfKL-Divergence-based Knowledge textbfDistillation unlearning algorithm for large language models (LLMs)
We achieve significant forget quality and effectively maintain the model utility in our experiments.
arXiv Detail & Related papers (2024-06-04T05:51:43Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
We present textscPuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales.
A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities.
arXiv Detail & Related papers (2024-05-07T07:39:15Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models [19.049828741139425]
Large Language Models (LLMs) have shown impressive capabilities, yet updating their knowledge remains a significant challenge.<n>Most existing methods use a paradigm that treats the question as the objective, with relevant knowledge being incrementally retrieved from the knowledge graph.<n>We propose a novel paradigm of fine-grained stateful knowledge exploration, which addresses the information granularity mismatch' issue.
arXiv Detail & Related papers (2024-01-24T13:36:50Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP) is a novel plug-and-play method to assist pre-trained language models in learning beneficial knowledge from knowledge graphs.
Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks.
arXiv Detail & Related papers (2023-09-27T06:33:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.