Finetuning Generative Large Language Models with Discrimination Instructions for Knowledge Graph Completion
- URL: http://arxiv.org/abs/2407.16127v1
- Date: Tue, 23 Jul 2024 02:25:01 GMT
- Title: Finetuning Generative Large Language Models with Discrimination Instructions for Knowledge Graph Completion
- Authors: Yang Liu, Xiaobin Tian, Zequn Sun, Wei Hu,
- Abstract summary: Traditional knowledge graph (KG) completion models learn embeddings to predict missing facts.
Recent works attempt to complete KGs in a text-generation manner with large language models (LLMs)
We present a finetuning framework, DIFT, aiming to unleash the KG completion ability of LLMs and avoid grounding errors.
- Score: 18.905215900684187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional knowledge graph (KG) completion models learn embeddings to predict missing facts. Recent works attempt to complete KGs in a text-generation manner with large language models (LLMs). However, they need to ground the output of LLMs to KG entities, which inevitably brings errors. In this paper, we present a finetuning framework, DIFT, aiming to unleash the KG completion ability of LLMs and avoid grounding errors. Given an incomplete fact, DIFT employs a lightweight model to obtain candidate entities and finetunes an LLM with discrimination instructions to select the correct one from the given candidates. To improve performance while reducing instruction data, DIFT uses a truncated sampling method to select useful facts for finetuning and injects KG embeddings into the LLM. Extensive experiments on benchmark datasets demonstrate the effectiveness of our proposed framework.
Related papers
- Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation [0.061446808540639365]
We use Knowledge Graphs to enhance Large Language Models (LLMs) for zero-shot Entity Disambiguation (ED)<n>We leverage the hierarchical representation of the entities' classes in a KG to prune the candidate space as well as the entities' descriptions to enrich the input prompt with additional factual knowledge.<n>Our evaluation on popular ED datasets shows that the proposed method outperforms non-enhanced and description-only enhanced LLMs, and has a higher degree of adaptability than task-specific models.
arXiv Detail & Related papers (2025-05-05T15:40:24Z) - LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning.
Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs.
We propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF)
arXiv Detail & Related papers (2025-04-04T03:03:47Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.
By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.
Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance [21.926934384262594]
Large language models (LLMs) offer new opportunities to enhance the annotation process.
We compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency.
Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance.
arXiv Detail & Related papers (2024-10-24T16:27:03Z) - Strategies for Improving NL-to-FOL Translation with LLMs: Data Generation, Incremental Fine-Tuning, and Verification [9.36179617282876]
We create a high-quality FOL-annotated subset of ProofWriter dataset using GPT-4o.
Our results show state-of-the-art performance for ProofWriter and ProntoQA datasets using ProofFOL on LLaMA-2 and Mistral models.
arXiv Detail & Related papers (2024-09-24T21:24:07Z) - Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions [49.36683223327633]
Large Language Models (LLMs) encapsulate extensive world knowledge and exhibit powerful context modeling capabilities.<n>We propose a novel framework that synergizes the strengths of LLMs with robust knowledge representation to enable effective and efficient KGC.<n>We achieve a 47% relative improvement over previous methods based on non-fine-tuned LLMs and, to our knowledge, are the first to achieve classification performance comparable to fine-tuned LLMs.
arXiv Detail & Related papers (2024-08-13T10:15:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Harnessing Large Language Models as Post-hoc Correctors [6.288056740658763]
We show that an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary Machine Learning model.
We form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset.
Our experimental results on text analysis and the challenging molecular predictions show that model improves the performance of a number of models by up to 39%.
arXiv Detail & Related papers (2024-02-20T22:50:41Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Prompt Tuning for Discriminative Pre-trained Language Models [96.04765512463415]
Recent works have shown promising results of prompt tuning in stimulating pre-trained language models (PLMs) for natural language processing (NLP) tasks.
It is still unknown whether and how discriminative PLMs, e.g., ELECTRA, can be effectively prompt-tuned.
We present DPT, the first prompt tuning framework for discriminative PLMs, which reformulates NLP tasks into a discriminative language modeling problem.
arXiv Detail & Related papers (2022-05-23T10:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.