論文の概要: Hyperinductance based on stacked Josephson junctions
- arxiv url: http://arxiv.org/abs/2505.02764v1
- Date: Mon, 05 May 2025 16:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.739607
- Title: Hyperinductance based on stacked Josephson junctions
- Title(参考訳): 重み付きジョセフソン接合に基づく超インダクタンス
- Authors: Paul Manset, José Palomo, Aurélien Schmitt, Kyrylo Gerashchenko, Rémi Rousseau, Himanshu Patange, Patrick Abgrall, Emmanuel Flurin, Samuel Deléglise, Thibaut Jacqmin, Léo Balembois,
- Abstract要約: スーパーインダクタンス(Superinductances)は、新しい量子回路アーキテクチャの鍵となる実装である。
垂直重積ジョゼフソン接合に基づく超インダクタンスを実現するための2つの製法を提案する。
本結果は,次世代量子回路のための拡張性,堅牢性,フレキシブルなプラットフォームとして,ジャンクション・スタックリングを確立した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superinductances are superconducting circuit elements that combine a large inductance with a low parasitic capacitance to ground, resulting in a characteristic impedance exceeding the resistance quantum $R_Q = h/(2e)^2 \simeq 6.45 \mathrm{k}\Omega$. In recent years, these components have become key enablers for emerging quantum circuit architectures. However, achieving high characteristic impedance while maintaining scalability and fabrication robustness remains a major challenge. In this work, we present two fabrication techniques for realizing superinductances based on vertically stacked Josephson junctions. Using a multi-angle Manhattan (MAM) process and a zero-angle (ZA) evaporation technique -- in which junction stacks are connected pairwise using airbridges -- we fabricate one-dimensional chains of stacks that act as high-impedance superconducting transmission lines. Two-tone microwave spectroscopy reveals the expected $\sqrt{n}$ scaling of the impedance with the number of junctions per stack. The chain fabricated using the ZA process, with nine junctions per stack, achieves a characteristic impedance of $\sim 16 \mathrm{k}\Omega$, a total inductance of $5.9 \mathrm{\mu H}$, and a maximum frequency-dependent impedance of $50 \mathrm{k}\Omega$ at 1.4 GHz. Our results establish junction stacking as a scalable, robust, and flexible platform for next-generation quantum circuits requiring ultra-high impedance environments.
- Abstract(参考訳): スーパーインダクタンス (Superinductances) は、大きなインダクタンスと低寄生容量を地上に結合する超伝導回路要素であり、抵抗量子$R_Q = h/(2e)^2 \simeq 6.45 \mathrm{k}\Omega$を超える特性インピーダンスをもたらす。
近年、これらのコンポーネントは量子回路アーキテクチャの進化の鍵となるものとなっている。
しかし、スケーラビリティと製造の堅牢性を維持しながら高い特性インピーダンスを達成することは大きな課題である。
そこで本研究では,垂直重積ジョゼフソン接合に基づく超インダクタンスを実現するための2つの製法を提案する。
マルチアングル・マンハッタン(MAM)プロセスとゼロアングル(ZA)蒸発技術(ジャンクション・スタックをエアブリッジで一対に接続する)を用いて、高インピーダンス超伝導伝送路として機能するスタックの一次元鎖を作製する。
2トーンマイクロ波分光法は、スタック当たりのジャンクション数とインピーダンスのスケーリングが期待される$\sqrt{n}$であることを示した。
ZAプロセスを用いて製造された鎖は、スタック毎に9つの接合を持ち、$\sim 16 \mathrm{k}\Omega$、合計インダクタンス5.9 \mathrm{\mu H}$、最大周波数依存インピーダンス50 \mathrm{k}\Omega$ 1.4 GHzの特性インピーダンスを達成する。
この結果は,超高インピーダンス環境を必要とする次世代量子回路のための,スケーラブルで堅牢でフレキシブルなプラットフォームとして接合積層を確立した。
関連論文リスト
- Strong Charge-Photon Coupling in Planar Germanium Enabled by Granular Aluminium Superinductors [0.0]
我々は、抵抗量子を超える特性インピーダンスを持つ粒状アルミニウム共振器を統合した。
強い電荷-光子結合と$g_textc/2pi= (566 pm2)$ MHz の速度を示す。
この方法は、新しい量子ビットと高忠実で長距離2量子ゲートの経路を開く。
論文 参考訳(メタデータ) (2024-07-03T12:53:01Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
汎用的な非相反線形系で結合された弱非調和超伝導回路を記述するために、効果的分散型リンドブラッドマスター方程式を構築する体系的な方法を提案する。
結果は、量子情報の非自明なルーティングを持つ複雑な超伝導量子プロセッサの設計や、凝縮物質系の量子シミュレータの設計に利用できる。
論文 参考訳(メタデータ) (2023-12-13T18:44:55Z) - Observation of the Schmid-Bulgadaev dissipative quantum phase transition [0.0]
抵抗体に接続されたジョセフソン接合は、超伝導体から絶縁体への散逸誘起量子相転移を起こさなければならないことを示す。
弾性散乱に加えて、入射光子は周波数非依存の確率で自発的にダウンコンバートすることができる。
論文 参考訳(メタデータ) (2023-04-12T12:35:50Z) - Improving Josephson junction reproducibility for superconducting quantum
circuits: junction area fluctuation [0.0]
ジョセフソン超伝導量子ビットとパラメトリック増幅器は超伝導量子回路の顕著な例である。
ジョセフソン接合の臨界電流$I_c$変動は、最も重要な電気パラメータとして最小化する必要がある。
ジョセフソン接合の加工工程を最適化し、9.8-4.4%および4.8-2.3%の抵抗変動を2,2時間22$mm2$および5times10$mm2$チップ領域で示す。
論文 参考訳(メタデータ) (2022-10-27T10:00:24Z) - Tuning the inductance of Josephson junction arrays without SQUIDs [0.0]
磁場可変インダクタの実装には超伝導量子干渉デバイス(SQUID)を用いるのが慣例である。
ここでは、単一Al/AlOx/Al Josephsonトンネル接合の(SQUIDのない)配列に等価なチューニング性を示す。
論文 参考訳(メタデータ) (2022-10-21T17:20:08Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
デバイスは、帯域幅250-300MHzの50ドルOmega$環境と一致し、入力飽和電力は最大で-95dBm、20dBゲインとなる。
54キュービットのSycamoreプロセッサがこれらのデバイスをベンチマークするために使用された。
設計は、システムノイズ、読み出しフィデリティ、およびクビットのデフォーカスに悪影響を及ぼさない。
論文 参考訳(メタデータ) (2022-09-16T07:34:05Z) - Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification [39.58317527488534]
低ノイズマイクロ波増幅器は、量子技術や電波天文学などの分野で弱い信号を検出するために不可欠である。
サイトが少ないコンパクトデバイスは、数百MHzからGHzの範囲で20dB以上のゲインを達成できることを示す。
また、このデバイスは量子ノイズ限界付近で動作し、最大15%の加工障害に対するトポロジ的保護を提供する。
論文 参考訳(メタデータ) (2022-07-27T18:07:20Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
超伝導フラクソニウム量子ビットは、大規模量子コンピューティングへの道のトランスモンに代わる有望な代替手段を提供する。
マルチキュービットデバイスにおける大きな課題は、スケーラブルなクロストークのないマルチキュービットアーキテクチャの実験的なデモンストレーションである。
ここでは、可変カプラ素子を持つ2量子フッソニウム系量子プロセッサを提案する。
論文 参考訳(メタデータ) (2022-03-30T13:44:52Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplersは、マルチキュービット超伝導量子プロセッサにおけるエラーを軽減するための道を提供する。
ほとんどのカップルは狭い周波数帯域で動作し、ZZ$相互作用のような特定のカップリングをターゲットにしている。
これらの制限を緩和する超伝導カプラを導入し、指数関数的に大きなオンオフ比を持つ2量子ビット相互作用を抑える。
論文 参考訳(メタデータ) (2021-07-21T03:03:13Z) - Surpassing the resistance quantum with a geometric superinductor [0.0]
スーパーインダクタは抵抗量子$R_textQ approx 6.45textkOmega$を超える特性インピーダンスを持ち、基底状態電荷の変動を抑制する。
特性インピーダンスが30.9$textkOmega$の104平面アルミコイル共振器を5.6GHzでモデル化・製作・特性評価する。
幾何学的スーパーインダクタは、制御されていないトンネル現象をなくし、高い線形性と磁気的に結合する能力を提供する。
論文 参考訳(メタデータ) (2020-07-03T12:22:44Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
ジョセフソントンネル接合は、量子ビットを含むほとんどの超伝導電子回路の中心である。
近年、サブミクロンスケールの重なり合う接合が注目されている。
この研究は、高度な材料と成長プロセスによるより標準化されたプロセスフローへの道を開き、超伝導量子回路の大規模製造において重要なステップとなる。
論文 参考訳(メタデータ) (2020-06-30T14:52:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。