Enhancing ML Model Interpretability: Leveraging Fine-Tuned Large Language Models for Better Understanding of AI
- URL: http://arxiv.org/abs/2505.02859v1
- Date: Fri, 02 May 2025 20:57:55 GMT
- Title: Enhancing ML Model Interpretability: Leveraging Fine-Tuned Large Language Models for Better Understanding of AI
- Authors: Jonas Bokstaller, Julia Altheimer, Julian Dormehl, Alina Buss, Jasper Wiltfang, Johannes Schneider, Maximilian Röglinger,
- Abstract summary: We present a novel reference architecture for the interpretation of XAI powered by a fine-tuned LLM.<n>We instantiate the reference architecture in the context of State-of-Health (SoH) prediction for batteries and validate its design in multiple evaluation and demonstration rounds.<n>The evaluation indicates that the implemented prototype enhances the human interpretability of ML, especially for users with less experience with XAI.
- Score: 1.0737278711356866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Across various sectors applications of eXplainableAI (XAI) gained momentum as the increasing black-boxedness of prevailing Machine Learning (ML) models became apparent. In parallel, Large Language Models (LLMs) significantly developed in their abilities to understand human language and complex patterns. By combining both, this paper presents a novel reference architecture for the interpretation of XAI through an interactive chatbot powered by a fine-tuned LLM. We instantiate the reference architecture in the context of State-of-Health (SoH) prediction for batteries and validate its design in multiple evaluation and demonstration rounds. The evaluation indicates that the implemented prototype enhances the human interpretability of ML, especially for users with less experience with XAI.
Related papers
- ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models [82.04858317800097]
We present ForenX, a novel method that not only identifies the authenticity of images but also provides explanations that resonate with human thoughts.<n>ForenX employs the powerful multimodal large language models (MLLMs) to analyze and interpret forensic cues.<n>We introduce ForgReason, a dataset dedicated to descriptions of forgery evidences in AI-generated images.
arXiv Detail & Related papers (2025-08-02T15:21:26Z) - LLMs for Explainable AI: A Comprehensive Survey [0.7373617024876725]
Large Language Models (LLMs) offer a promising approach to enhancing Explainable AI (XAI)<n>LLMs transform complex machine learning outputs into easy-to-understand narratives.<n>LLMs can bridge the gap between sophisticated model behavior and human interpretability.
arXiv Detail & Related papers (2025-03-31T18:19:41Z) - Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.<n>LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.<n>LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Explainable artificial intelligence (XAI): from inherent explainability to large language models [0.0]
Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models.<n>This paper details the advancements of explainable AI methods, from inherently interpretable models to modern approaches.<n>We review explainable AI techniques that leverage vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models.
arXiv Detail & Related papers (2025-01-17T06:16:57Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.<n>We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.<n>Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-Former is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM.
X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders.
It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM.
arXiv Detail & Related papers (2024-07-18T18:39:54Z) - TokenSHAP: Interpreting Large Language Models with Monte Carlo Shapley Value Estimation [0.0]
TokenSHAP is a novel method for interpreting large language models.
It adapts Shapley values from cooperative game theory to natural language processing.
It provides interpretable, quantitative measures of token importance.
arXiv Detail & Related papers (2024-07-14T08:07:50Z) - Explaining Multi-modal Large Language Models by Analyzing their Vision Perception [4.597864989500202]
This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component.
We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding.
arXiv Detail & Related papers (2024-05-23T14:24:23Z) - LLMs for XAI: Future Directions for Explaining Explanations [50.87311607612179]
We focus on refining explanations computed using existing XAI algorithms.
Initial experiments and user study suggest that LLMs offer a promising way to enhance the interpretability and usability of XAI.
arXiv Detail & Related papers (2024-05-09T19:17:47Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.