Sugar-Coated Poison: Benign Generation Unlocks LLM Jailbreaking
- URL: http://arxiv.org/abs/2504.05652v2
- Date: Sat, 24 May 2025 14:48:07 GMT
- Title: Sugar-Coated Poison: Benign Generation Unlocks LLM Jailbreaking
- Authors: Yu-Hang Wu, Yu-Jie Xiong, Hao Zhang, Jia-Chen Zhang, Zheng Zhou,
- Abstract summary: jailbreak attacks based on prompt engineering have become a major safety threat.<n>This study introduces the concept of Defense Threshold Decay (DTD), revealing the potential safety impact caused by LLMs' benign generation.<n>We propose the Sugar-Coated Poison attack paradigm, which uses a "semantic reversal" strategy to craft benign inputs that are opposite in meaning to malicious intent.
- Score: 15.953888359667497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasingly deep integration of large language models (LLMs) across diverse domains, the effectiveness of their safety mechanisms is encountering severe challenges. Currently, jailbreak attacks based on prompt engineering have become a major safety threat. However, existing methods primarily rely on black-box manipulation of prompt templates, resulting in poor interpretability and limited generalization. To break through the bottleneck, this study first introduces the concept of Defense Threshold Decay (DTD), revealing the potential safety impact caused by LLMs' benign generation: as benign content generation in LLMs increases, the model's focus on input instructions progressively diminishes. Building on this insight, we propose the Sugar-Coated Poison (SCP) attack paradigm, which uses a "semantic reversal" strategy to craft benign inputs that are opposite in meaning to malicious intent. This strategy induces the models to generate extensive benign content, thereby enabling adversarial reasoning to bypass safety mechanisms. Experiments show that SCP outperforms existing baselines. Remarkably, it achieves an average attack success rate of 87.23% across six LLMs. For defense, we propose Part-of-Speech Defense (POSD), leveraging verb-noun dependencies for syntactic analysis to enhance safety of LLMs while preserving their generalization ability.
Related papers
- Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - Prefill-Based Jailbreak: A Novel Approach of Bypassing LLM Safety Boundary [2.4329261266984346]
Large Language Models (LLMs) are designed to generate helpful and safe content.
adversarial attacks, commonly referred to as jailbreak, can bypass their safety protocols.
We introduce a novel jailbreak attack method that leverages the prefilling feature of LLMs.
arXiv Detail & Related papers (2025-04-28T07:38:43Z) - DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
We introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs.
Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks.
During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens.
arXiv Detail & Related papers (2025-04-18T09:02:12Z) - Align in Depth: Defending Jailbreak Attacks via Progressive Answer Detoxification [17.500701903902094]
Large Language Models (LLMs) are vulnerable to jailbreak attacks, which use crafted prompts to elicit toxic responses.<n>This paper proposes DEEPALIGN, a robust defense framework that fine-tunes LLMs to progressively detoxify generated content.
arXiv Detail & Related papers (2025-03-14T08:32:12Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
We study the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies.<n>We find that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously.
arXiv Detail & Related papers (2025-01-21T15:24:29Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, Multimodal Large Language Models (MLLMs) remain vulnerable to jailbreak attacks.<n>We propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
In this paper, we introduce a novel jailbreak method, which induces large language models (LLMs) to produce harmful content.<n>By injecting jailbreak information into user prompts, SIJ successfully induces the model to output harmful content.<n>We propose a simple defense method called Self-Reminder-Key to counter SIJ and demonstrate its effectiveness.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.<n>It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.<n>Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts [88.96201324719205]
Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training.<n>We identify a new safety vulnerability in LLMs, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms.<n>We introduce a novel attack method, textitActorBreaker, which identifies actors related to toxic prompts within pre-training distribution.
arXiv Detail & Related papers (2024-10-14T16:41:49Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
Large Language Models (LLMs) have gained widespread use, raising concerns about their security.
We introduce PathSeeker, a novel black-box jailbreak method, which is inspired by the game of rats escaping a maze.
Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs.
arXiv Detail & Related papers (2024-09-21T15:36:26Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
We propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG)
PG guides the model to identify harmful prompts by directly setting the first few tokens of the model's output.
We demonstrate the effectiveness of PG across three models and five attack methods.
arXiv Detail & Related papers (2024-08-15T14:51:32Z) - Poisoned LangChain: Jailbreak LLMs by LangChain [9.658883589561915]
We propose the concept of indirect jailbreak and achieve Retrieval-Augmented Generation via LangChain.
We tested this method on six different large language models across three major categories of jailbreak issues.
arXiv Detail & Related papers (2024-06-26T07:21:02Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)<n>Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.<n> Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.