Uncertainty Quantification for Machine Learning in Healthcare: A Survey
- URL: http://arxiv.org/abs/2505.02874v1
- Date: Sun, 04 May 2025 16:56:22 GMT
- Title: Uncertainty Quantification for Machine Learning in Healthcare: A Survey
- Authors: L. Julián Lechuga López, Shaza Elsharief, Dhiyaa Al Jorf, Firas Darwish, Congbo Ma, Farah E. Shamout,
- Abstract summary: Uncertainty Quantification (UQ) is pivotal in enhancing the robustness, reliability, and interpretability of Machine Learning (ML) systems for healthcare.<n>Despite the emergence of ML-based clinical decision support tools, the lack of principled quantification of uncertainty in ML models remains a major challenge.<n>This study will provide a clear overview of the challenges and opportunities of implementing UQ in the ML pipeline for healthcare.
- Score: 3.023243549665548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty Quantification (UQ) is pivotal in enhancing the robustness, reliability, and interpretability of Machine Learning (ML) systems for healthcare, optimizing resources and improving patient care. Despite the emergence of ML-based clinical decision support tools, the lack of principled quantification of uncertainty in ML models remains a major challenge. Current reviews have a narrow focus on analyzing the state-of-the-art UQ in specific healthcare domains without systematically evaluating method efficacy across different stages of model development, and despite a growing body of research, its implementation in healthcare applications remains limited. Therefore, in this survey, we provide a comprehensive analysis of current UQ in healthcare, offering an informed framework that highlights how different methods can be integrated into each stage of the ML pipeline including data processing, training and evaluation. We also highlight the most popular methods used in healthcare and novel approaches from other domains that hold potential for future adoption in the medical context. We expect this study will provide a clear overview of the challenges and opportunities of implementing UQ in the ML pipeline for healthcare, guiding researchers and practitioners in selecting suitable techniques to enhance the reliability, safety and trust from patients and clinicians on ML-driven healthcare solutions.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation [0.0]
This research paper investigates the application of Large Language Models (LLMs) in healthcare.<n>We focus on enhancing medical decision support through Retrieval-Augmented Generation (RAG) integrated with hospital-specific data and fine-tuning using Quantized Low-Rank Adaptation (QLoRA)<n>We touch on the ethical considerations-patient privacy, data security, and the need for rigorous clinical validation-as well as the practical challenges of integrating such systems into real-world healthcare.
arXiv Detail & Related papers (2025-05-06T10:31:54Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.<n>Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.<n>We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - Performance of Large Language Models in Supporting Medical Diagnosis and Treatment [0.0]
AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes.<n>This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access.
arXiv Detail & Related papers (2025-04-14T16:53:59Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - The Role of Explainable AI in Revolutionizing Human Health Monitoring: A Review [0.0]
Review aims to highlight the role of Explainable AI (XAI) in addressing the interpretability issues of machine learning (ML) models in healthcare.<n>A comprehensive literature search was conducted across multiple databases to identify studies that applied XAI techniques in healthcare.
arXiv Detail & Related papers (2024-09-11T15:31:40Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
The integration of external knowledge from Large Language Models (LLMs) presents a promising avenue for improving healthcare predictions.
We propose IntelliCare, a novel framework that leverages LLMs to provide high-quality patient-level external knowledge.
IntelliCare identifies patient cohorts and employs task-relevant statistical information to augment LLM understanding and generation.
arXiv Detail & Related papers (2024-08-23T13:56:00Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
The paper reviews interpretable AI processes, methods, applications, and the challenges of implementation in healthcare.
It aims to foster a comprehensive understanding of the crucial role of a robust interpretability approach in healthcare.
arXiv Detail & Related papers (2023-11-18T12:29:18Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.