Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2505.03406v1
- Date: Tue, 06 May 2025 10:31:54 GMT
- Title: Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation
- Authors: Mohammad Shoaib Ansari, Mohd Sohail Ali Khan, Shubham Revankar, Aditya Varma, Anil S. Mokhade,
- Abstract summary: This research paper investigates the application of Large Language Models (LLMs) in healthcare.<n>We focus on enhancing medical decision support through Retrieval-Augmented Generation (RAG) integrated with hospital-specific data and fine-tuning using Quantized Low-Rank Adaptation (QLoRA)<n>We touch on the ethical considerations-patient privacy, data security, and the need for rigorous clinical validation-as well as the practical challenges of integrating such systems into real-world healthcare.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This research paper investigates the application of Large Language Models (LLMs) in healthcare, specifically focusing on enhancing medical decision support through Retrieval-Augmented Generation (RAG) integrated with hospital-specific data and fine-tuning using Quantized Low-Rank Adaptation (QLoRA). The system utilizes Llama 3.2-3B-Instruct as its foundation model. By embedding and retrieving context-relevant healthcare information, the system significantly improves response accuracy. QLoRA facilitates notable parameter efficiency and memory optimization, preserving the integrity of medical information through specialized quantization techniques. Our research also shows that our model performs relatively well on various medical benchmarks, indicating that it can be used to make basic medical suggestions. This paper details the system's technical components, including its architecture, quantization methods, and key healthcare applications such as enhanced disease prediction from patient symptoms and medical history, treatment suggestions, and efficient summarization of complex medical reports. We touch on the ethical considerations-patient privacy, data security, and the need for rigorous clinical validation-as well as the practical challenges of integrating such systems into real-world healthcare workflows. Furthermore, the lightweight quantized weights ensure scalability and ease of deployment even in low-resource hospital environments. Finally, the paper concludes with an analysis of the broader impact of LLMs on healthcare and outlines future directions for LLMs in medical settings.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Infi-Med: Low-Resource Medical MLLMs with Robust Reasoning Evaluation [33.22110638954145]
We propose Infi-Med, a comprehensive framework for medical large language models (MLLMs)<n>Infi-Med introduces three key innovations: (1) a resource-efficient approach through curating and constructing high-quality supervised fine-tuning datasets with minimal sample requirements; (2) enhanced multimodal reasoning capabilities for cross-modal integration and clinical task understanding; and (3) a systematic evaluation system that assesses model performance across medical modalities and task types.<n>Our experiments demonstrate that Infi-Med achieves state-of-the-art (SOTA) performance in general medical reasoning while maintaining rapid adaptability to clinical scenarios.
arXiv Detail & Related papers (2025-05-29T10:31:57Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.<n>Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.<n>We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - Performance of Large Language Models in Supporting Medical Diagnosis and Treatment [0.0]
AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes.<n>This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access.
arXiv Detail & Related papers (2025-04-14T16:53:59Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Fine-Tuning LLMs for Reliable Medical Question-Answering Services [0.6103716315036845]
We present an advanced approach to medical question-answering (QA) services, using fine-tuned Large Language Models (LLMs)
Our study focuses on optimizing models like LLaMA-2 and Mistral, which have shown great promise in delivering precise, reliable medical answers.
arXiv Detail & Related papers (2024-10-21T15:12:20Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Leveraging Medical Knowledge Graphs Into Large Language Models for Diagnosis Prediction: Design and Application Study [6.10474409373543]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.<n>We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.<n>Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
We propose an end-to-end machine learning solution based on large language models (LLMs)
The entities used in the KG construction process are diseases, factors, treatments, as well as manifestations that coexist with the patient while experiencing the disease.
The application of the proposed methodology is demonstrated on age-related macular degeneration.
arXiv Detail & Related papers (2023-01-29T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.