Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)
- URL: http://arxiv.org/abs/2505.03463v1
- Date: Tue, 06 May 2025 12:01:40 GMT
- Title: Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)
- Authors: Muge Du, Zhuozhao Zheng, Wenying Wang, Guotao Quan, Wuliang Shi, Le Shen, Li Zhang, Liang Li, Yinong Liu, Yuxiang Xing,
- Abstract summary: This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction.<n>It addresses these challenges through four key contributions: backward-warping deformation, motion-compensated analytical reconstruction, and dimensional-reduction design for efficient 4D coordinate encoding.<n>The framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.
- Score: 9.894794660436693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.
Related papers
- Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding [50.54887630778593]
Compressive imaging (CI) reconstruction aims to recover high-dimensional images from low-dimensional measurements compressed.<n>Existing unsupervised representations may struggle to achieve a desired balance between representation ability and efficiency.<n>We propose Decomposed multi-resolution Grid encoding (GridTD), an unsupervised continuous representation framework for CI reconstruction.
arXiv Detail & Related papers (2025-07-10T12:36:20Z) - Towards Prospective Medical Image Reconstruction via Knowledge-Informed Dynamic Optimal Transport [58.6869774515413]
This paper introduces imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dynamic optimal transport framework.<n>KIDOT learns from unpaired data by modeling reconstruction as a continuous evolution path from measurements to images, guided by an imaging knowledge-informed cost function and transport equation.<n>Experiments on MRI and CT reconstruction demonstrate KIDOT's superior performance.
arXiv Detail & Related papers (2025-05-23T09:05:10Z) - X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction [45.31051025401413]
X$2$-Gaussian is a novel framework for continuous-time 4DCT reconstruction.<n>It integrates dynamic radiative splatting with self-supervised respiratory motion learning.<n>It achieves a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior splatting techniques.
arXiv Detail & Related papers (2025-03-27T17:59:57Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - INeAT: Iterative Neural Adaptive Tomography [34.84974955073465]
Iterative Neural Adaptive Tomography (INeAT) incorporates posture optimization to counteract the influence of posture perturbations in data.
We demonstrate that INeAT achieves artifact-suppressed and resolution-enhanced reconstruction in scenarios with significant pose disturbances.
arXiv Detail & Related papers (2023-11-03T01:00:36Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data.
Our method demonstrated promising performance of generating high-resolution and high-quality whole heart reconstructions.
arXiv Detail & Related papers (2021-02-16T00:39:43Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.