Causal Intervention Framework for Variational Auto Encoder Mechanistic Interpretability
- URL: http://arxiv.org/abs/2505.03530v1
- Date: Tue, 06 May 2025 13:40:59 GMT
- Title: Causal Intervention Framework for Variational Auto Encoder Mechanistic Interpretability
- Authors: Dip Roy,
- Abstract summary: This paper introduces a comprehensive causal intervention framework for mechanistic interpretability of Variational Autoencoders (VAEs)<n>We develop techniques to identify and analyze "circuit motifs" in VAEs, examining how semantic factors are encoded, processed, and disentangled through the network layers.<n>Results show that our interventions can successfully isolate functional circuits, map computational graphs to causal graphs of semantic factors, and distinguish between polysemantic and monosemantic units.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mechanistic interpretability of deep learning models has emerged as a crucial research direction for understanding the functioning of neural networks. While significant progress has been made in interpreting discriminative models like transformers, understanding generative models such as Variational Autoencoders (VAEs) remains challenging. This paper introduces a comprehensive causal intervention framework for mechanistic interpretability of VAEs. We develop techniques to identify and analyze "circuit motifs" in VAEs, examining how semantic factors are encoded, processed, and disentangled through the network layers. Our approach uses targeted interventions at different levels: input manipulations, latent space perturbations, activation patching, and causal mediation analysis. We apply our framework to both synthetic datasets with known causal relationships and standard disentanglement benchmarks. Results show that our interventions can successfully isolate functional circuits, map computational graphs to causal graphs of semantic factors, and distinguish between polysemantic and monosemantic units. Furthermore, we introduce metrics for causal effect strength, intervention specificity, and circuit modularity that quantify the interpretability of VAE components. Experimental results demonstrate clear differences between VAE variants, with FactorVAE achieving higher disentanglement scores (0.084) and effect strengths (mean 4.59) compared to standard VAE (0.064, 3.99) and Beta-VAE (0.051, 3.43). Our framework advances the mechanistic understanding of generative models and provides tools for more transparent and controllable VAE architectures.
Related papers
- Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors [61.92704516732144]
We show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior.<n>We propose two methods that leverage causal mechanisms to predict the correctness of model outputs.
arXiv Detail & Related papers (2025-05-17T00:31:39Z) - Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.<n>We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.<n>CAP intervenes in model activations through constituent-based pooling at various model levels.<n>Our findings highlight fundamental limitations in current transformer architectures regarding compositional semantics processing and model interpretability.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights [10.777646083061395]
We introduce concept editing'', an innovative variation of knowledge editing that uncovers conceptualisation mechanisms within large language models.
We analyse the Multi-Layer Perceptron (MLP), Multi-Head Attention (MHA), and hidden state components of transformer models.
Our work highlights the complex, layered nature of semantic processing in LLMs and the challenges of isolating and modifying specific concepts within these models.
arXiv Detail & Related papers (2024-08-05T18:50:08Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
In the absence of a strong generative decoder, disentanglement does not necessarily imply controllability.
The structure of the latent space with respect to the VAE-decoder plays an important role in boosting the ability of a generative model to manipulate different attributes.
arXiv Detail & Related papers (2021-08-01T18:37:43Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.