Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers
- URL: http://arxiv.org/abs/2301.03093v1
- Date: Sun, 8 Jan 2023 19:10:20 GMT
- Title: Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers
- Authors: Md. Kowsher, Mahbuba Yesmin Turaba, Tanvir Sajed, M M Mahabubur Rahman
- Abstract summary: The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy.
Our training and test dataset is an accumulation of 9483 diabetes patients information.
Our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
- Score: 1.1470070927586016
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Type 2 Diabetes is a fast-growing, chronic metabolic disorder due to
imbalanced insulin activity.The motion of this research is a comparative study
of seven machine learning classifiers and an artificial neural network method
to prognosticate the detection and treatment of diabetes with high accuracy,in
order to identify and treat diabetes patients at an early age.Our training and
test dataset is an accumulation of 9483 diabetes patients information.The
training dataset is large enough to negate overfitting and provide for highly
accurate test performance.We use performance measures such as accuracy and
precision to find out the best algorithm deep ANN which outperforms with 95.14%
accuracy among all other tested machine learning classifiers.We hope our
high-performing model can be used by hospitals to predict diabetes and drive
research into more accurate prediction models.
Related papers
- Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
We aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data.
arXiv Detail & Related papers (2024-10-04T12:52:49Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
In the U.S., over a third of adults are pre-diabetic, with 80% unaware of their status.
Existing wearable glucose monitors are limited by the lack of models trained on small datasets.
arXiv Detail & Related papers (2024-06-12T07:05:53Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - DiabetesNet: A Deep Learning Approach to Diabetes Diagnosis [6.095029229301643]
Experimental results on three datasets show significant improvements in overall accuracy, sensitivity, and specificity compared to traditional methods.
This underscores the potential of deep learning models for robust diabetes diagnosis.
arXiv Detail & Related papers (2024-03-12T10:18:59Z) - Diabetes detection using deep learning techniques with oversampling and
feature augmentation [0.3749861135832073]
Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
arXiv Detail & Related papers (2024-02-03T15:30:20Z) - A novel solution of deep learning for enhanced support vector machine
for predicting the onset of type 2 diabetes [32.25039205521283]
This research aims to increase the accuracy and Area Under the Curve (AUC) metric while improving the processing time for predicting the onset of Type 2 Diabetes.
The proposed solution provides an average accuracy of 86.31 % and an average AUC value of 0.8270 or 82.70 %, with an improvement of 3.8 milliseconds in the processing.
arXiv Detail & Related papers (2022-08-05T18:15:40Z) - Using Machine Learning Techniques to Identify Key Risk Factors for
Diabetes and Undiagnosed Diabetes [0.0]
This paper reviews a wide selection of machine learning models built to predict the presence of diabetes and the presence of undiagnosed diabetes.
The most relevant variables of the best performing models are then compared.
Blood osmolality, family history, the prevalance of various compounds, and hypertension are key indicators for all diabetes risk.
arXiv Detail & Related papers (2021-05-19T20:02:35Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Predicting trends in the quality of state-of-the-art neural networks
without access to training or testing data [46.63168507757103]
We provide a detailed meta-analysis of hundreds of publicly-available pretrained models.
We find that power law based metrics can do much better -- quantitatively better at discriminating among series of well-trained models.
arXiv Detail & Related papers (2020-02-17T00:01:12Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.