論文の概要: AI-Driven IRM: Transforming insider risk management with adaptive scoring and LLM-based threat detection
- arxiv url: http://arxiv.org/abs/2505.03796v1
- Date: Thu, 01 May 2025 18:41:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.816141
- Title: AI-Driven IRM: Transforming insider risk management with adaptive scoring and LLM-based threat detection
- Title(参考訳): AI駆動型ITM:適応スコアとLLMに基づく脅威検出によるインサイダーリスク管理の転換
- Authors: Lokesh Koli, Shubham Kalra, Rohan Thakur, Anas Saifi, Karanpreet Singh,
- Abstract要約: インサイダーの脅威は、組織のセキュリティに重大な課題をもたらします。
IRMシステムは行動分析、動的リスクスコアリング、リアルタイムポリシー適用を統合している。
システムは偽陽性を59%減少させ、真の正検出率を30%向上させる。
- 参考スコア(独自算出の注目度): 0.31457219084519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Insider threats pose a significant challenge to organizational security, often evading traditional rule-based detection systems due to their subtlety and contextual nature. This paper presents an AI-powered Insider Risk Management (IRM) system that integrates behavioral analytics, dynamic risk scoring, and real-time policy enforcement to detect and mitigate insider threats with high accuracy and adaptability. We introduce a hybrid scoring mechanism - transitioning from the static PRISM model to an adaptive AI-based model utilizing an autoencoder neural network trained on expert-annotated user activity data. Through iterative feedback loops and continuous learning, the system reduces false positives by 59% and improves true positive detection rates by 30%, demonstrating substantial gains in detection precision. Additionally, the platform scales efficiently, processing up to 10 million log events daily with sub-300ms query latency, and supports automated enforcement actions for policy violations, reducing manual intervention. The IRM system's deployment resulted in a 47% reduction in incident response times, highlighting its operational impact. Future enhancements include integrating explainable AI, federated learning, graph-based anomaly detection, and alignment with Zero Trust principles to further elevate its adaptability, transparency, and compliance-readiness. This work establishes a scalable and proactive framework for mitigating emerging insider risks in both on-premises and hybrid environments.
- Abstract(参考訳): 内部の脅威は組織のセキュリティに重大な課題をもたらし、多くの場合、その微妙さと文脈的な性質のために、従来のルールベースの検出システムを避けます。
本稿では、行動分析、動的リスクスコアリング、リアルタイムポリシー強化を統合したAIを活用したインサイダーリスクマネジメント(IRM)システムについて、高精度で適応性の高いインサイダー脅威を検出し軽減する。
本稿では,静的PRISMモデルからAIベースの適応モデルへ移行するハイブリッドスコアリング機構を提案する。
繰り返しフィードバックループと継続的学習により、偽陽性を59%削減し、真の正検出率を30%向上させ、検出精度を大幅に向上させる。
さらに、プラットフォームは効率的にスケールし、300ms以下のクエリレイテンシで1日に最大1000万のログイベントを処理し、ポリシー違反に対する自動実行アクションをサポートし、手作業による介入を減らす。
IRMシステムの展開により、インシデント応答時間が47%削減され、運用上の影響が強調された。
今後の拡張には、説明可能なAIの統合、フェデレーション付き学習、グラフベースの異常検出、Zero Trustの原則との整合性などが含まれる。
この作業は、オンプレミスとハイブリッド環境の両方において、新たなインサイダーリスクを軽減する、スケーラブルで積極的なフレームワークを確立します。
関連論文リスト
- Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models [87.66870367661342]
大規模言語モデル(LLM)は、医療におけるAIアプリケーションで使用される。
LLMを継続的にストレステストするレッドチームフレームワークは、4つのセーフティクリティカルなドメインで重大な弱点を明らかにすることができる。
敵エージェントのスイートは、自律的に変化するテストケースに適用され、安全でないトリガー戦略を特定し、評価する。
私たちのフレームワークは、進化可能でスケーラブルで信頼性の高い、次世代の医療AIのセーフガードを提供します。
論文 参考訳(メタデータ) (2025-07-30T08:44:22Z) - AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
人工知能(AI)と機械学習(ML)モデルは、5Gラジオアクセスネットワーク(RAN)を急速に浸透させている
これらの開発は、AIネイティブなトランシーバーを6Gのキーイネーブルとして基盤を築いた。
論文 参考訳(メタデータ) (2025-07-24T16:04:59Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - Active Test-time Vision-Language Navigation [60.69722522420299]
ATENAは、不確実なナビゲーション結果に対するエピソードフィードバックを通じて、実用的な人間とロボットのインタラクションを可能にする、テスト時のアクティブな学習フレームワークである。
特にATENAは、成功エピソードにおける確実性を高め、失敗エピソードにおいてそれを減らすことを学び、不確実性の校正を改善している。
さらに,自信ある予測に基づいて,エージェントがナビゲーション結果を評価することができる自己学習戦略を提案する。
論文 参考訳(メタデータ) (2025-06-07T02:24:44Z) - Real-Time Detection of Insider Threats Using Behavioral Analytics and Deep Evidential Clustering [0.0]
本稿では,行動分析と深層的クラスタリングを組み合わせた,インサイダー脅威をリアルタイムに検出するフレームワークを提案する。
本システムは,ユーザの行動を捉え,分析し,文脈に富んだ行動特徴を適用し,潜在的な脅威を分類する。
我々は,CERTやTWOSなどのベンチマークインサイダー脅威データセットについて,平均検出精度94.7%,偽陽性率38%を従来のクラスタリング手法と比較し評価した。
論文 参考訳(メタデータ) (2025-05-21T11:21:33Z) - Safety Devolution in AI Agents [56.482973617087254]
本研究では,検索アクセスの拡大がモデル信頼性,バイアス伝搬,有害コンテンツ生成に与える影響について検討した。
整列 LLM 上に構築された検索補助エージェントは、検索なしでの無検閲モデルよりも安全でない振る舞いをすることが多い。
これらの発見は、検索が強化され、ますます自律的なAIシステムにおいて、公正性と信頼性を確保するための堅牢な緩和戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-05-20T11:21:40Z) - Predicting Driver's Perceived Risk: a Model Based on Semi-Supervised Learning Strategy [7.227510169013427]
ドライバーの主観的リスク(DSPR)モデルは、異方性と減衰を動的に引き起こすメカニズムとして認識されるリスクについて提案される。
20人の参加者がドライバー・イン・ザ・ループ実験のために採用され、様々な自動走行シナリオを経験する際に、リアルタイムの主観的リスクレーティング(SRR)を報告します。
DSPRは3つの最先端リスクモデルと比較して、SRRの予測において87.91%の予測精度を達成している。
論文 参考訳(メタデータ) (2025-04-17T05:50:33Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Anomaly Detection for Incident Response at Scale [1.284857579394658]
我々は、Walmartのビジネスとシステムの状態をリアルタイムで監視する、機械学習ベースの異常検出製品を提案する。
3ヶ月にわたる検証の間、製品は3000以上のモデルから25以上のアプリケーション、プラットフォーム、運用チームへの予測を提供した。
AIDRは、検出にかかる時間が少なく、従来の方法よりも偽陽性が少ない、さまざまな社内チームで成功している。
論文 参考訳(メタデータ) (2024-04-24T00:46:19Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
本稿では電力グリッドサプライチェーン(PGSC)のための新しいゼロ信頼フレームワークを提案する。
潜在的なGenAIによる攻撃ベクターの早期発見、テールリスクに基づく安定性の評価、そしてそのような脅威の緩和を容易にする。
実験の結果,ゼロ信頼フレームワークは攻撃ベクトル生成に95.7%の精度,95%安定PGSCに9.61%のリスク尺度,GenAIによる攻撃に対する防御に99%の信頼性が得られた。
論文 参考訳(メタデータ) (2024-03-11T02:47:21Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
現在の脆弱性スクリーニング技術は、新しい脆弱性を特定したり、開発者がコード脆弱性と分類を提供するのに効果がない。
これらの問題に対処するために,変換器 "RoBERTa" とグラフ畳み込みニューラルネットワーク (GCN) を組み合わせたマルチタスク・アンバイアス脆弱性分類器を提案する。
本稿では、逐次フロー、制御フロー、データフローからエッジを統合することで生成されたソースコードからのセマンティック脆弱性グラフ(SVG)表現と、Poacher Flow(PF)と呼ばれる新しいフローを利用したトレーニングプロセスを提案する。
論文 参考訳(メタデータ) (2023-04-17T20:54:14Z) - SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving [16.78084912175149]
本稿では,SOTIFリスクを最小化するための体系的アプローチとして,自己監視・自己適応システムを提案する。
このシステムのコアは、自動運転車内で実装された人工知能アルゴリズムのリスクモニタリングである。
固有認識アルゴリズムのリスクと外部衝突のリスクは、SOTIFエントロピーを介して共同で定量化される。
論文 参考訳(メタデータ) (2022-11-08T05:02:12Z) - Robust Regularization with Adversarial Labelling of Perturbed Samples [22.37046166576859]
本稿では、正規化手法として、ALPS(Adversarial Labelling of Perturbed Samples)を提案する。
ALPSはニューラルネットワークを、それぞれの真正な入力サンプルを、逆向きに割り当てられたラベルとともに、別のものに向かって摂動することによって形成された合成サンプルで訓練する。
SVHN、CIFAR-10、CIFAR-100、Tiny-ImageNetのデータセットによる実験は、ALPSが最先端の正規化性能を持っていることを示している。
論文 参考訳(メタデータ) (2021-05-28T11:26:49Z) - Certifiable Robustness to Adversarial State Uncertainty in Deep
Reinforcement Learning [40.989393438716476]
ディープニューラルネットワークベースのシステムは、現在では多くのロボティクスタスクにおいて最先端のシステムとなっているが、ネットワークの堅牢性に関する公式な保証なしに、安全クリティカルドメインへの適用は危険なままである。
センサー入力に対する小さな摂動は、しばしばネットワークベースの決定を変えるのに十分である。
この研究は、認証された敵対的ロバスト性の研究を活用して、深い強化学習アルゴリズムのためのオンラインロバストを開発する。
論文 参考訳(メタデータ) (2020-04-11T21:36:13Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。