IntelliCardiac: An Intelligent Platform for Cardiac Image Segmentation and Classification
- URL: http://arxiv.org/abs/2505.03838v2
- Date: Thu, 08 May 2025 01:21:21 GMT
- Title: IntelliCardiac: An Intelligent Platform for Cardiac Image Segmentation and Classification
- Authors: Ting Yu Tsai, An Yu, Meghana Spurthi Maadugundu, Ishrat Jahan Mohima, Umme Habiba Barsha, Mei-Hwa F. Chen, Balakrishnan Prabhakaran, Ming-Ching Chang,
- Abstract summary: We introduce IntelliCardiac, a web-based platform for the automatic segmentation of 4D cardiac images and disease classification.<n>IntelliCardiac uses an AI model trained on the publicly accessible ACDC dataset to identify essential heart structures and categorize cardiac diseases.<n>The system supports analysis of both the right and left ventricles as well as myocardium, and then classifies patient's cardiac images into five diagnostic categories.
- Score: 8.793377489331466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise and effective processing of cardiac imaging data is critical for the identification and management of the cardiovascular diseases. We introduce IntelliCardiac, a comprehensive, web-based medical image processing platform for the automatic segmentation of 4D cardiac images and disease classification, utilizing an AI model trained on the publicly accessible ACDC dataset. The system, intended for patients, cardiologists, and healthcare professionals, offers an intuitive interface and uses deep learning models to identify essential heart structures and categorize cardiac diseases. The system supports analysis of both the right and left ventricles as well as myocardium, and then classifies patient's cardiac images into five diagnostic categories: dilated cardiomyopathy, myocardial infarction, hypertrophic cardiomyopathy, right ventricular abnormality, and no disease. IntelliCardiac combines a deep learning-based segmentation model with a two-step classification pipeline. The segmentation module gains an overall accuracy of 92.6%. The classification module, trained on characteristics taken from segmented heart structures, achieves 98% accuracy in five categories. These results exceed the performance of the existing state-of-the-art methods that integrate both segmentation and classification models. IntelliCardiac, which supports real-time visualization, workflow integration, and AI-assisted diagnostics, has great potential as a scalable, accurate tool for clinical decision assistance in cardiac imaging and diagnosis.
Related papers
- From Motion to Meaning: Biomechanics-Informed Neural Network for Explainable Cardiovascular Disease Identification [1.1142444517901016]
We utilize the energy strain formulation of Neo-Hookean material to model cardiac tissue deformations.<n>We estimate the local strains within the moving heart and extract a detailed set of features used for cardiovascular disease classification.
arXiv Detail & Related papers (2025-07-08T08:43:05Z) - Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
We present a cardiac sensing foundation model (CSFM) that learns unified representations from vast, heterogeneous health records.<n>Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets.<n> CSFM consistently outperforms traditional one-modal-one-task approaches.
arXiv Detail & Related papers (2025-06-23T20:58:12Z) - Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
Heartcare Suite is a framework for fine-grained electrocardiogram (ECG) understanding.<n>Heartcare-220K is a high-quality, structured, and comprehensive multimodal ECG dataset.<n>Heartcare-Bench is a benchmark to guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios.
arXiv Detail & Related papers (2025-06-06T07:56:41Z) - Innovative Integration of 4D Cardiovascular Reconstruction and Hologram: A New Visualization Tool for Coronary Artery Bypass Grafting Planning [33.92599418560439]
The aim of this study is to develop and evaluate a dynamic cardiovascular visualization tool for preoperative coronary artery bypass grafting (CABG) planning.<n>The tool produces clinically relevant dynamic holograms from patient-specific data, with clinical feedback confirming its effectiveness for preoperative planning.
arXiv Detail & Related papers (2025-04-28T00:56:06Z) - Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning [0.0]
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders.<n>We present a model to improve semantic segmentation of cardiac images.
arXiv Detail & Related papers (2025-04-18T00:54:30Z) - CACTUS: An Open Dataset and Framework for Automated Cardiac Assessment and Classification of Ultrasound Images Using Deep Transfer Learning [14.284404065445012]
The paper introduces a Deep Learning (DL) framework consisting of two main components.<n>The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN)<n>The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images.
arXiv Detail & Related papers (2025-03-07T17:29:04Z) - Multi-Stage Segmentation and Cascade Classification Methods for Improving Cardiac MRI Analysis [15.236546465767026]
We introduce a novel deep learning-based approach to segmentation and classification of cardiac magnetic resonance images.<n>The method improved segmentation accuracy, achieving a Dice coefficient of 0.974 for the left ventricle and 0.947 for the right ventricle.<n>For classification, a cascade of deep learning classifiers was employed to distinguish heart conditions, including hypertrophic cardiomyopathy, myocardial infarction, and dilated cardiomyopathy.
arXiv Detail & Related papers (2024-12-12T15:53:14Z) - Automatic diagnosis of cardiac magnetic resonance images based on semi-supervised learning [4.568207745795955]
This paper introduces a semi-supervised model for automatic segmentation of cardiac images and auxiliary diagnosis.
The model achieves fully automated, high-precision segmentation of cardiac images, extraction of features, calculation of clinical indices, and prediction of diseases.
arXiv Detail & Related papers (2024-05-23T08:21:03Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - A Generalizable Deep Learning System for Cardiac MRI [29.429744474335347]
We describe a foundational vision system for cardiac MRI, capable of representing the breadth of human cardiovascular disease and health.
Our deep learning model is trained via self-supervised contrastive learning, by which visual concepts in cine-sequence cardiac MRI scans are learned from the raw text of the accompanying radiology reports.
We show that our deep learning system is capable of not only understanding the staggering complexity of human cardiovascular disease, but can be directed towards clinical problems of interest yielding impressive, clinical grade diagnostic accuracy with a fraction of the training data typically required for such tasks.
arXiv Detail & Related papers (2023-12-01T05:27:29Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - A Robust Interpretable Deep Learning Classifier for Heart Anomaly
Detection Without Segmentation [37.70077538403524]
We argue the importance of heart sound segmentation as a prior step for heart sound classification.
We then propose a robust classifier for abnormal heart sound detection.
Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.
arXiv Detail & Related papers (2020-05-21T06:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.