論文の概要: Advanced Clustering Framework for Semiconductor Image Analytics Integrating Deep TDA with Self-Supervised and Transfer Learning Techniques
- arxiv url: http://arxiv.org/abs/2505.03848v1
- Date: Mon, 05 May 2025 17:53:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.869967
- Title: Advanced Clustering Framework for Semiconductor Image Analytics Integrating Deep TDA with Self-Supervised and Transfer Learning Techniques
- Title(参考訳): 深部TDAと自己監督・伝達学習技術を統合した半導体画像解析のための高度なクラスタリングフレームワーク
- Authors: Janhavi Giri, Attila Lengyel, Don Kent, Edward Kibardin,
- Abstract要約: 本稿では,深部トポロジカルデータ分析(TDA)と自己教師あり・伝達学習技術を統合した高度なクラスタリングフレームワークを提案する。
このフレームワークは、欠陥パターンとプロセスのバリエーションに整合したクラスタをうまく識別する。
- 参考スコア(独自算出の注目度): 1.03121181235382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semiconductor manufacturing generates vast amounts of image data, crucial for defect identification and yield optimization, yet often exceeds manual inspection capabilities. Traditional clustering techniques struggle with high-dimensional, unlabeled data, limiting their effectiveness in capturing nuanced patterns. This paper introduces an advanced clustering framework that integrates deep Topological Data Analysis (TDA) with self-supervised and transfer learning techniques, offering a novel approach to unsupervised image clustering. TDA captures intrinsic topological features, while self-supervised learning extracts meaningful representations from unlabeled data, reducing reliance on labeled datasets. Transfer learning enhances the framework's adaptability and scalability, allowing fine-tuning to new datasets without retraining from scratch. Validated on synthetic and open-source semiconductor image datasets, the framework successfully identifies clusters aligned with defect patterns and process variations. This study highlights the transformative potential of combining TDA, self-supervised learning, and transfer learning, providing a scalable solution for proactive process monitoring and quality control in semiconductor manufacturing and other domains with large-scale image datasets.
- Abstract(参考訳): 半導体製造は、欠陥識別と収差最適化に不可欠な大量の画像データを生成するが、しばしば手動検査能力を超えている。
従来のクラスタリング技術は、高次元でラベルなしのデータと苦労し、ニュアンスドパターンのキャプチャの有効性を制限します。
本稿では、深部トポロジカルデータ分析(TDA)と自己教師付きおよび転送学習技術を統合する高度なクラスタリングフレームワークを導入し、教師なし画像クラスタリングの新しいアプローチを提案する。
TDAは固有のトポロジ的特徴を捉え、自己教師付き学習はラベルのないデータから意味のある表現を抽出し、ラベル付きデータセットへの依存を減らす。
トランスファーラーニングはフレームワークの適応性とスケーラビリティを高め、スクラッチから再トレーニングすることなく、新しいデータセットに微調整できる。
合成およびオープンソースの半導体イメージデータセットに基づいて検証されたこのフレームワークは、欠陥パターンとプロセスのバリエーションに整合したクラスタを正常に識別する。
本研究は,TDA,自己教師型学習,トランスファーラーニングを併用し,大規模画像データセットを用いた半導体製造などの領域におけるプロアクティブプロセス監視と品質管理のためのスケーラブルなソリューションを提供する。
関連論文リスト
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
本稿では,物体検出のための半教師付き学習における27の最先端開発について概説する。
データ拡張テクニック、擬似ラベル戦略、一貫性の正則化、敵の訓練方法などをカバーする。
我々は,既存の課題を克服し,物体検出のための半教師あり学習における新たな方向性を探るため,さらなる研究の関心を喚起することを目的としている。
論文 参考訳(メタデータ) (2024-07-11T12:58:13Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques [1.2328446298523066]
ハイパースペクトルイメージングは、その例外的なスペクトル分解能のため、土地利用とカバーの正確な分類を提供する。
しかし、高次元化と空間分解能の制限による課題は、その効果を妨げている。
本研究では,深層学習技術を用いて特徴を効率的に処理し,抽出し,データを統合的に分類することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2024-03-03T15:47:43Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z) - Semi-Supervised StyleGAN for Disentanglement Learning [79.01988132442064]
現在の解離法は、いくつかの固有の制限に直面している。
半教師付き高分解能ディスタングル学習のためのStyleGANに基づく新しいアーキテクチャと損失関数を設計する。
論文 参考訳(メタデータ) (2020-03-06T22:54:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。