論文の概要: 3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation
- arxiv url: http://arxiv.org/abs/2505.04097v1
- Date: Wed, 07 May 2025 03:32:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.96716
- Title: 3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation
- Title(参考訳): データ拡張CNNを用いたアルツハイマー診断のための3次元脳MRI分類
- Authors: Thien Nhan Vo, Bac Nam Ho, Thanh Xuan Truong,
- Abstract要約: 3次元畳み込みニューラルネットワークは、T1強調脳スキャンを健康またはアルツハイマーと分類するために開発された。
ネットワークは、3D畳み込み、プーリング、バッチ正規化、密度の高いReLU層、シグモイド出力を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.
- Abstract(参考訳): 3次元畳み込みニューラルネットワークは、T1強調脳MRIスキャンを健康またはアルツハイマーと分類するために開発された。
ネットワークは、3D畳み込み、プーリング、バッチ正規化、密度の高いReLU層、シグモイド出力を含む。
確率的ノイズ注入と5倍のクロスバリデーションを用いて,RCC曲線0.961の精度と面積0.912の精度を実現した。
感度と特異性はともに0.90以上であった。
これらの結果は、合成増強による0.10の利得を報告した以前の作業と一致している。
以上の結果から、3次元MRI分類における単純な拡張の有効性が示され、3次元U-Netやビジョントランスフォーマーといった高度な拡張手法やアーキテクチャの今後の探索の動機となった。
関連論文リスト
- AlzhiNet: Traversing from 2DCNN to 3DCNN, Towards Early Detection and Diagnosis of Alzheimer's Disease [1.6908255257928966]
2次元畳み込みニューラルネットワーク(2D-CNN)と3次元畳み込みニューラルネットワーク(3D-CNN)を統合した新しいハイブリッドディープラーニングフレームワークを提案する。
我々のフレームワークはKaggleとMIRIADのデータセットから磁気共鳴イメージング(MRI)で検証され、それぞれ98.9%と99.99%、AUCは100%である。
論文 参考訳(メタデータ) (2024-10-03T17:37:18Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
本稿では,新しい3次元焦点変調UNetであるFocalSegNetを提案する。
UIA検出では偽陽性率は0.21で感度は0.80であった。
論文 参考訳(メタデータ) (2023-08-06T03:28:08Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Detection of Large Vessel Occlusions using Deep Learning by Deforming
Vessel Tree Segmentations [5.408694811103598]
この研究は、船体木分割マスクの弾性変形で訓練されたケースレベルの分類に畳み込みニューラルネットワークを使用し、トレーニングデータを人工的に増強する。
ニューラルネットワークは、LVOと影響を受ける半球の存在を分類する。
5倍のクロス検証アブレーション実験において,提案手法を用いることで,少数のデータセットからでも頑健なモデルを訓練できることが実証された。
論文 参考訳(メタデータ) (2021-12-03T09:07:29Z) - Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks [0.0]
我々は,3D畳み込みニューラルネットワーク(CNN)を前処理した1,112人の被験者の安静状態誘導体を用いて分類を行う。
以上の結果から,Augmentationはテスト精度をわずかに改善するだけであることがわかった。
論文 参考訳(メタデータ) (2021-10-20T11:03:17Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。