Optimization of Infectious Disease Intervention Measures Based on Reinforcement Learning - Empirical analysis based on UK COVID-19 epidemic data
- URL: http://arxiv.org/abs/2505.04161v1
- Date: Wed, 07 May 2025 06:23:26 GMT
- Title: Optimization of Infectious Disease Intervention Measures Based on Reinforcement Learning - Empirical analysis based on UK COVID-19 epidemic data
- Authors: Baida Zhang, Yakai Chen, Huichun Li, Zhenghu Zu,
- Abstract summary: We establish a decision-making framework based on an individual agent-based transmission model.<n>Covasim, a detailed and widely used agent-based disease transmission model, was modified to support reinforcement learning research.
- Score: 1.2637032027754087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Globally, the outbreaks of infectious diseases have exerted an extremely profound and severe influence on health security and the economy. During the critical phases of epidemics, devising effective intervention measures poses a significant challenge to both the academic and practical arenas. There is numerous research based on reinforcement learning to optimize intervention measures of infectious diseases. Nevertheless, most of these efforts have been confined within the differential equation based on infectious disease models. Although a limited number of studies have incorporated reinforcement learning methodologies into individual-based infectious disease models, the models employed therein have entailed simplifications and limitations, rendering it incapable of modeling the complexity and dynamics inherent in infectious disease transmission. We establish a decision-making framework based on an individual agent-based transmission model, utilizing reinforcement learning to continuously explore and develop a strategy function. The framework's validity is verified through both experimental and theoretical approaches. Covasim, a detailed and widely used agent-based disease transmission model, was modified to support reinforcement learning research. We conduct an exhaustive exploration of the application efficacy of multiple algorithms across diverse action spaces. Furthermore, we conduct an innovative preliminary theoretical analysis concerning the issue of "time coverage". The results of the experiment robustly validate the effectiveness and feasibility of the methodological framework of this study. The coping strategies gleaned therefrom prove highly efficacious in suppressing the expansion of the epidemic scale and safeguarding the stability of the economic system, thereby providing crucial reference perspectives for the formulation of global public health security strategies.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak [0.0]
Tuberosis (TB) remains a formidable global health challenge, driven by complex transmission dynamics and influenced by factors such as population mobility and behavioral changes.<n>We propose an Epidemic-Guided Deep Learning approach that fuses mechanistic epidemiological principles with advanced deep learning techniques.
arXiv Detail & Related papers (2025-02-15T12:39:42Z) - Reinforcement Learning for Safe Occupancy Strategies in Educational
Spaces during an Epidemic [9.68145635795782]
This research focuses on reinforcement learning (RL) to develop strategies that balance minimizing infections with maximizing in-person interactions in educational settings.
We introduce SafeCampus, a novel tool that simulates infection spread and facilitates the exploration of various RL algorithms.
arXiv Detail & Related papers (2023-12-23T04:51:23Z) - On Pathologies in KL-Regularized Reinforcement Learning from Expert
Demonstrations [79.49929463310588]
We show that KL-regularized reinforcement learning with behavioral reference policies can suffer from pathological training dynamics.
We show that the pathology can be remedied by non-parametric behavioral reference policies.
arXiv Detail & Related papers (2022-12-28T16:29:09Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Exploring the Pareto front of multi-objective COVID-19 mitigation
policies using reinforcement learning [1.7056617973440933]
Infectious disease outbreaks can have a disruptive impact on public health and societal processes.
Current research focuses on optimizing policies with a single objective, such as the pathogen's attack rate.
We apply deep multi-objective reinforcement learning and build upon a state-of-the-art algorithm to learn a set of solutions.
arXiv Detail & Related papers (2022-04-11T11:55:06Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - STOPPAGE: Spatio-temporal Data Driven Cloud-Fog-Edge Computing Framework
for Pandemic Monitoring and Management [28.205715426050105]
It is absolutely necessary to develop an analytics framework to deliver insights in improving administrative policy and enhance the preparedness to combat the pandemic.
This paper proposes a STOP-temporal knowledge mining framework, named STOP to model the impact of human mobility and contextual information over large geographic area in different temporal scales.
The framework has two modules: (i) S-temporal data and computing infrastructure using fog/edge based architecture; and (ii) S-temporal data analytics module to efficiently extract knowledge from heterogeneous data sources.
arXiv Detail & Related papers (2021-04-04T12:29:31Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Multi-Objective Model-based Reinforcement Learning for Infectious
Disease Control [19.022696762983017]
Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health.
Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses.
We propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost.
arXiv Detail & Related papers (2020-09-09T23:55:27Z) - Deep reinforcement learning for large-scale epidemic control [0.3694429692322631]
We investigate a deep reinforcement learning approach to automatically learn prevention strategies in the context of pandemic influenza.
Our model balances complexity and computational efficiency such that the use of reinforcement learning techniques becomes attainable.
This experiment shows that deep reinforcement learning can be used to learn mitigation policies in complex epidemiological models with a large state space.
arXiv Detail & Related papers (2020-03-30T17:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.