Clock precision beyond the Standard Quantum Limit at $10^{-18}$ level
- URL: http://arxiv.org/abs/2505.04538v1
- Date: Wed, 07 May 2025 16:15:25 GMT
- Title: Clock precision beyond the Standard Quantum Limit at $10^{-18}$ level
- Authors: Y. A. Yang, Maya Miklos, Yee Ming Tso, Stella Kraus, Joonseok Hur, Jun Ye,
- Abstract summary: Optical atomic clocks with unrivaled precision and accuracy have advanced the frontier of precision measurement science.<n>A fundamental limitation on clock precision is the Standard Quantum Limit, which stems from the uncorrelated projection noise of each atom.<n>Here we demonstrate a fractional frequency precision of 1.1 $times 10-18$ for a single spin-squeezed clock.<n>These results establish the most precise entanglement-enhanced clock to date and offer a powerful platform for exploring the interplay of gravity and quantum entanglement.
- Score: 0.4379805041989628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical atomic clocks with unrivaled precision and accuracy have advanced the frontier of precision measurement science and opened new avenues for exploring fundamental physics. A fundamental limitation on clock precision is the Standard Quantum Limit (SQL), which stems from the uncorrelated projection noise of each atom. State-of-the-art optical lattice clocks interrogate large ensembles to minimize the SQL, but density-dependent frequency shifts pose challenges to scaling the atom number. The SQL can be surpassed, however, by leveraging entanglement, though it remains an open problem to achieve quantum advantage from spin squeezing at state-of-the-art stability levels. Here we demonstrate clock performance beyond the SQL, achieving a fractional frequency precision of 1.1 $\times 10^{-18}$ for a single spin-squeezed clock. With cavity-based quantum nondemolition (QND) measurements, we prepare two spin-squeezed ensembles of $\sim$30,000 strontium atoms confined in a two-dimensional optical lattice. A synchronous clock comparison with an interrogation time of 61 ms achieves a metrological improvement of 2.0(2) dB beyond the SQL, after correcting for state preparation and measurement errors. These results establish the most precise entanglement-enhanced clock to date and offer a powerful platform for exploring the interplay of gravity and quantum entanglement.
Related papers
- Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - Realization of Landau-Zener Rabi Oscillations on optical lattice clock [18.80726593016468]
Landau-Zener Rabi oscillation (LZRO) has been suggested for widespread use in manipulating quantum states.
LZRO has never been observed in cold atoms due to its stringent requirements.
Results suggest that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock.
arXiv Detail & Related papers (2024-08-19T11:57:10Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Benchmarking digital quantum simulations above hundreds of qubits using quantum critical dynamics [42.29248343585333]
We benchmark quantum hardware and error mitigation techniques on up to 133 qubits.
We show reliable control up to a two-qubit gate depth of 28, featuring a maximum of 1396 two-qubit gates.
Results are transferable to applications such as Hamiltonian simulation, variational algorithms, optimization, or quantum machine learning.
arXiv Detail & Related papers (2024-04-11T18:00:05Z) - Multi-qubit gates and Schrödinger cat states in an optical clock [3.476421900110317]
We develop a family of multi-qubit Rydberg gates to generate Schr"odinger cat states of the Greenberger-Horne-Zeilinger type with up to 9 optical clock qubits in a programmable atom array.
In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit using GHZ states of up to 4 qubits.
These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
arXiv Detail & Related papers (2024-02-26T04:11:58Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Direct comparison of two spin squeezed optical clocks below the quantum
projection noise limit [0.6376404422444008]
Building scalable quantum systems that demonstrate genuine enhancement based on entanglement is a major scientific goal.
We present a new optical platform integrated with collective strong-coupling cavity QED for quantum non-demolition (QND) measurement.
arXiv Detail & Related papers (2022-11-16T02:22:49Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - Resolving the gravitational redshift within a millimeter atomic sample [94.94540201762686]
Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates.
We measure a linear frequency gradient consistent with the gravitational redshift within a single millimeter scale sample of ultracold strontium.
arXiv Detail & Related papers (2021-09-24T23:58:35Z) - High precision differential clock comparisons with a multiplexed optical
lattice clock [10.155753113587854]
We implement a "multiplexed" one-dimensional optical lattice clock in which movable ensembles of ultra-cold strontium atoms are trapped.
We observe atom-atom coherence times up to 26 seconds, a 270-fold improvement over the atom-laser coherence time.
The unique capabilities offered by this platform pave the way for future studies of precision isotope shift measurements.
arXiv Detail & Related papers (2021-09-24T23:58:33Z) - Entanglement-Enhanced Optical Atomic Clock [0.6868418672911781]
We report creation of a many-atom entangled state on an optical transition, and demonstrate an OLC with an Allan deviation below the standard quantum limit.
Our results should be readily applicable to other systems, thus enabling further advances in timekeeping precision and accuracy.
arXiv Detail & Related papers (2020-06-12T22:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.