Realization of Landau-Zener Rabi Oscillations on optical lattice clock
- URL: http://arxiv.org/abs/2408.09922v1
- Date: Mon, 19 Aug 2024 11:57:10 GMT
- Title: Realization of Landau-Zener Rabi Oscillations on optical lattice clock
- Authors: Wei Tan, Wei-Xin Liu, Ying-Xin Chen, Chi-Hua Zhou, Guo-Dong Zhao, Hong Chang, Tao Wang,
- Abstract summary: Landau-Zener Rabi oscillation (LZRO) has been suggested for widespread use in manipulating quantum states.
LZRO has never been observed in cold atoms due to its stringent requirements.
Results suggest that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock.
- Score: 18.80726593016468
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atom is one of the most prominent platforms for quantum computing and precision measurement. However, LZRO has never been observed in cold atoms due to its stringent requirements. By compensating for the linear drift of the clock laser and optimizing experimental parameters, we successfully measured LZRO on the strontium atomic optical clock platform under both fast and slow passage limits within $4$ to $6$ driving periods. Compared to previous results on other platforms, the duration of the plateau is $10^4$ times longer in the optical lattice clock. The experimental data also suggest that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock, paving the way for manipulating quantum states against various environmental effects in cold atomic systems.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Multi-qubit gates and Schrödinger cat states in an optical clock [3.476421900110317]
We develop a family of multi-qubit Rydberg gates to generate Schr"odinger cat states of the Greenberger-Horne-Zeilinger type with up to 9 optical clock qubits in a programmable atom array.
In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit using GHZ states of up to 4 qubits.
These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
arXiv Detail & Related papers (2024-02-26T04:11:58Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Realizing spin squeezing with Rydberg interactions in a programmable
optical clock [0.6376404422444008]
We demonstrate spin squeezing in a neutral-atom optical clock based on a programmable array of interacting optical qubits.
We observe a fractional stability of $1.087(1)times 10-15$ at one-second averaging time, which is 1.94(1) dB below the standard quantum limit.
The realization of this spin-squeezing protocol in a programmable atom-array clock opens the door to a wide range of quantum-information inspired techniques.
arXiv Detail & Related papers (2023-03-14T17:11:33Z) - Direct comparison of two spin squeezed optical clocks below the quantum
projection noise limit [0.6376404422444008]
Building scalable quantum systems that demonstrate genuine enhancement based on entanglement is a major scientific goal.
We present a new optical platform integrated with collective strong-coupling cavity QED for quantum non-demolition (QND) measurement.
arXiv Detail & Related papers (2022-11-16T02:22:49Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - A quantum network of entangled optical atomic clocks [0.0]
We demonstrate the first quantum network of entangled optical clocks using two $88$Sr$+$ ions separated by a macroscopic distance (2 m)
We find that entanglement reduces the measurement uncertainty by a factor close to $sqrt2$, as predicted for the Heisenberg limit.
arXiv Detail & Related papers (2021-11-19T17:34:48Z) - Improving the Q factor of an optical atomic clock using quantum
non-demolition measurement [0.0]
Quantum non-demolition (QND) measurement is a remarkable tool for the manipulation of quantum systems.
We apply QND measurement to an optical lattice clock with unrivalled frequency precision.
We maintain 95% contrast and observe a seven-fold increase in the clock's emphQ factor to $1.7times1015$.
arXiv Detail & Related papers (2020-10-20T16:29:42Z) - Experimentally verifying anti-Kibble-Zurek behavior in a quantum system
under noisy control field [38.305954220018315]
Kibble-Zurek mechanism (KZM) is a universal framework which could in principle describe phase transition phenomenon.
A conflicting observation termed anti-KZ behavior has been reported in the study of ferroelectric phase transition.
Our research sets a stage for quantum simulation of such anti-KZ behavior in two-level systems.
arXiv Detail & Related papers (2020-08-03T14:03:21Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.