Privacy-preserving neutral atom-based quantum classifier towards real healthcare applications
- URL: http://arxiv.org/abs/2505.04570v1
- Date: Wed, 07 May 2025 17:03:35 GMT
- Title: Privacy-preserving neutral atom-based quantum classifier towards real healthcare applications
- Authors: Ettore Canonici, Filippo Caruso,
- Abstract summary: ML healthcare applications crucially require performance, interpretability of data, and respect for data privacy.<n>Recently, dedicated methods are starting to be developed aiming to protect data privacy.<n>Here, a Support Vector Machine (SVM) classifier model is proposed whose training is reformulated into a Quadratic Unconstrained Binary Optimization problem.<n>The model does not require anonymization techniques to protect data privacy since the sensitive data are not needed to be transferred to the cloud-available QPU.
- Score: 1.2891210250935148
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Technological advances in Artificial Intelligence (AI) and Machine Learning (ML) for the healthcare domain are rapidly arising, with a growing discussion regarding the ethical management of their development. In general, ML healthcare applications crucially require performance, interpretability of data, and respect for data privacy. The latter is an increasingly debated topic as commercial cloud computing services become more and more widespread. Recently, dedicated methods are starting to be developed aiming to protect data privacy. However, these generally result in a trade-off forcing one to balance the level of data privacy and the algorithm performance. Here, a Support Vector Machine (SVM) classifier model is proposed whose training is reformulated into a Quadratic Unconstrained Binary Optimization (QUBO) problem, and adapted to a neutral atom-based Quantum Processing Unit (QPU). Our final model does not require anonymization techniques to protect data privacy since the sensitive data are not needed to be transferred to the cloud-available QPU. Indeed, the latter is used only during the training phase, hence allowing a future concrete application in a real-world scenario. Finally, performance and scaling analyses on a publicly available breast cancer dataset are discussed, both using ideal and noisy simulations for the training process, and also successfully tested on a currently available real neutral-atom QPU.
Related papers
- Rethinking Data Protection in the (Generative) Artificial Intelligence Era [115.71019708491386]
We propose a four-level taxonomy that captures the diverse protection needs arising in modern (generative) AI models and systems.<n>Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline.
arXiv Detail & Related papers (2025-07-03T02:45:51Z) - LLM-based Agent Simulation for Maternal Health Interventions: Uncertainty Estimation and Decision-focused Evaluation [30.334268991701727]
Agent-based simulation is crucial for modeling complex human behavior.<n>Traditional approaches require extensive domain knowledge and large datasets.<n>Large language models (LLMs) offer a promising alternative by leveraging broad world knowledge.
arXiv Detail & Related papers (2025-03-25T20:24:47Z) - Privacy-Preserving SAM Quantization for Efficient Edge Intelligence in Healthcare [9.381558154295012]
Segment Anything Model (SAM) excels in intelligent image segmentation.
SAM poses significant challenges for deployment on resource-limited edge devices.
We propose a data-free quantization framework for SAM, called DFQ-SAM, which learns and calibrates quantization parameters without any original data.
arXiv Detail & Related papers (2024-09-14T10:43:35Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - Privacy-Preserving Edge Federated Learning for Intelligent Mobile-Health Systems [4.082799056366928]
We propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure.
We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon's AWS cloud platform.
arXiv Detail & Related papers (2024-05-09T08:15:31Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Wildest Dreams: Reproducible Research in Privacy-preserving Neural
Network Training [2.853180143237022]
This work focuses on the ML model's training phase, where maintaining user data privacy is of utmost importance.
We provide a solid theoretical background that eases the understanding of current approaches.
We reproduce results for some of the papers and examine at what level existing works in the field provide support for open science.
arXiv Detail & Related papers (2024-03-06T10:25:36Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization [66.27399823422665]
Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications.<n>We propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET.
arXiv Detail & Related papers (2022-09-12T13:26:26Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Machine Learning in Precision Medicine to Preserve Privacy via
Encryption [2.099922236065961]
We propose a generic machine learning with encryption (MLE) framework, which we used to build an ML model that predicts cancer.
Our framework's prediction accuracy is slightly higher than that of the most recent studies conducted on the same dataset.
We provide an open-source repository that contains the design and implementation of the framework, all the ML experiments and code, and the final predictive model deployed to a free cloud service.
arXiv Detail & Related papers (2021-02-05T20:22:15Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.