Active Sampling for MRI-based Sequential Decision Making
- URL: http://arxiv.org/abs/2505.04586v1
- Date: Wed, 07 May 2025 17:27:51 GMT
- Title: Active Sampling for MRI-based Sequential Decision Making
- Authors: Yuning Du, Jingshuai Liu, Rohan Dharmakumar, Sotirios A. Tsaftaris,
- Abstract summary: We present a novel reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data.<n>Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity, and overall sequential diagnosis, while substantially saving k-space samples.
- Score: 10.32110889047933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
Related papers
- OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection [1.0190194769786831]
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data.<n>We propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM.<n>The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task.
arXiv Detail & Related papers (2025-07-25T13:00:40Z) - NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification [3.5313393560458826]
Deep Learning has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis.<n>We propose a novel transformer-based Mixture-of-Experts (MoE) framework for classifying neurological disorders.<n>Our framework achieves a validation accuracy of 82.47%, outperforming baseline methods by over 10%.
arXiv Detail & Related papers (2025-06-17T20:40:06Z) - MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
We compare various strategies for predicting survival at the WSI and patient level.<n>The former treats each WSI as an independent sample, mimicking the strategy adopted in other works.<n>The latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide.
arXiv Detail & Related papers (2025-03-29T11:14:02Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - SCREENER: A general framework for task-specific experiment design in quantitative MRI [5.531414667421242]
SCREENER is a general framework for task-specific experiment design in quantitative MRI.
It incorporates a task-specific objective and seeks the optimal protocol with a deep-reinforcement-learning (DRL) based optimization strategy.
Results demonstrate SCREENER outperforms previous ad hoc and optimized protocols under clinical signal-to-noise ratio (SNR) conditions.
arXiv Detail & Related papers (2024-08-06T21:43:50Z) - The MRI Scanner as a Diagnostic: Image-less Active Sampling [9.964204750574469]
We propose an ML-based framework that learns an active sampling strategy, via reinforcement learning, at a patient-level to directly infer disease from undersampled k-space.
We validate our approach by inferring Meniscus Tear in undersampled knee MRI data, where we achieve diagnostic performance comparable with ML-based diagnosis.
arXiv Detail & Related papers (2024-06-24T16:00:20Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
We propose a deep learning based multi-modal computing model for MRI synthesis with feature disentanglement strategy.
The proposed approach decomposes each input modality into modality-invariant space with shared information and modality-specific space with specific information.
To address the lack of specific information of the target modality in the test phase, a local adaptive fusion (LAF) module is adopted to generate a modality-like pseudo-target.
arXiv Detail & Related papers (2021-05-06T17:22:22Z) - Deep learning in magnetic resonance prostate segmentation: A review and
a new perspective [4.453410156617238]
We review the state-of-the-art deep learning algorithms in MR prostate segmentation.
We provide insights to the field by discussing their limitations and strengths.
We propose an optimised 2D U-Net for MR prostate segmentation.
arXiv Detail & Related papers (2020-11-16T08:58:38Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.