論文の概要: Scientific Hypothesis Generation and Validation: Methods, Datasets, and Future Directions
- arxiv url: http://arxiv.org/abs/2505.04651v1
- Date: Tue, 06 May 2025 19:22:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.611587
- Title: Scientific Hypothesis Generation and Validation: Methods, Datasets, and Future Directions
- Title(参考訳): 科学的仮説の生成と検証:方法,データセット,今後の方向性
- Authors: Adithya Kulkarni, Fatimah Alotaibi, Xinyue Zeng, Longfeng Wu, Tong Zeng, Barry Menglong Yao, Minqian Liu, Shuaicheng Zhang, Lifu Huang, Dawei Zhou,
- Abstract要約: 大規模言語モデル(LLM)は科学的仮説の生成と検証を変革している。
この調査は、LLM駆動のアプローチに関する構造化された概要を提供する。
本稿では,検索強化生成,知識グラフ補完,シミュレーション,因果推論,ツール支援推論などの手法について検討する。
- 参考スコア(独自算出の注目度): 19.926445428206776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are transforming scientific hypothesis generation and validation by enabling information synthesis, latent relationship discovery, and reasoning augmentation. This survey provides a structured overview of LLM-driven approaches, including symbolic frameworks, generative models, hybrid systems, and multi-agent architectures. We examine techniques such as retrieval-augmented generation, knowledge-graph completion, simulation, causal inference, and tool-assisted reasoning, highlighting trade-offs in interpretability, novelty, and domain alignment. We contrast early symbolic discovery systems (e.g., BACON, KEKADA) with modern LLM pipelines that leverage in-context learning and domain adaptation via fine-tuning, retrieval, and symbolic grounding. For validation, we review simulation, human-AI collaboration, causal modeling, and uncertainty quantification, emphasizing iterative assessment in open-world contexts. The survey maps datasets across biomedicine, materials science, environmental science, and social science, introducing new resources like AHTech and CSKG-600. Finally, we outline a roadmap emphasizing novelty-aware generation, multimodal-symbolic integration, human-in-the-loop systems, and ethical safeguards, positioning LLMs as agents for principled, scalable scientific discovery.
- Abstract(参考訳): 大規模言語モデル(LLM)は、情報合成、潜伏関係の発見、推論強化を可能にすることによって、科学的仮説の生成と検証を変換している。
このサーベイは、シンボリックフレームワーク、生成モデル、ハイブリッドシステム、マルチエージェントアーキテクチャなど、LLM駆動のアプローチに関する構造化された概要を提供する。
本稿では,検索強化生成,知識グラフ補完,シミュレーション,因果推論,ツール支援推論などの手法について検討し,解釈可能性,新規性,ドメインアライメントのトレードオフを強調した。
我々は、初期記号発見システム(BACON、KEKADA)と、インコンテキスト学習とドメイン適応を微調整、検索、記号接地により活用する現代のLLMパイプラインとを対比する。
検証には,シミュレーション,人間とAIのコラボレーション,因果モデリング,不確実性定量化をレビューし,オープンワールドの文脈における反復的評価を強調した。
この調査は、バイオメディシン、材料科学、環境科学、社会科学にまたがるデータセットをマッピングし、AHTechやCSKG-600といった新しいリソースを導入している。
最後に,新奇性を意識した生成,マルチモーダル・シンボリック統合,ヒューマン・イン・ザ・ループシステム,倫理的保護を重視し,LCMを原則的かつスケーラブルな科学的発見のエージェントとして位置づけるロードマップを概説する。
関連論文リスト
- Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models [93.1043186636177]
我々は、人々が分散表現と象徴表現の組み合わせを使って、新しい状況に合わせた見知らぬ精神モデルを構築するという仮説を探求する。
モデル合成アーキテクチャ」という概念の計算的実装を提案する。
我々は、新しい推論データセットに基づく人間の判断のモデルとして、MSAを評価した。
論文 参考訳(メタデータ) (2025-07-16T18:01:03Z) - The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist [3.7803247326675162]
科学革新は、LLM(Large Language Models)の急速な進歩によって、パラダイムシフトが進んでいる。
本調査では,3つの階層レベル – 評価,コラボレーション,科学者 – にまたがる科学革新におけるLLMの役割を,包括的に分類する枠組みを提案する。
論文 参考訳(メタデータ) (2025-07-16T00:11:01Z) - A Survey of AI for Materials Science: Foundation Models, LLM Agents, Datasets, and Tools [15.928285656168422]
ファンデーションモデル(FM)は、科学的発見のためにスケーラブルで汎用的でマルチモーダルなAIシステムを実現する。
この調査は、この成長分野をサポートする基盤モデル、エージェントシステム、データセット、計算ツールの包括的概要を提供する。
論文 参考訳(メタデータ) (2025-06-25T18:10:30Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems [6.284317913684068]
複合アルシステム(CAIS)は、大規模な言語モデル(LLM)をレトリバー、エージェント、ツール、オーケストレータといった外部コンポーネントと統合する新興パラダイムである。
学術と産業の両方で採用が増加しているにもかかわらず、CAISの景観は断片化され、分析、分類、評価のための統一された枠組みが欠如している。
本調査は,次世代のシステムレベルの人工知能を理解し,開発し,推進するための総合的な基盤を研究者や実践者に提供することを目的とする。
論文 参考訳(メタデータ) (2025-06-05T02:34:43Z) - Generative Models in Computational Pathology: A Comprehensive Survey on Methods, Applications, and Challenges [44.77761945679817]
生成モデリングは、計算病理学において有望な方向として現れてきた。
生成モデルは、データ効率の学習、合成データ拡張、マルチモーダル表現などの機能を提供する。
このレビューは、この分野における最近の進歩の総合的な合成を提供する。
論文 参考訳(メタデータ) (2025-05-16T08:44:50Z) - A Survey on Hypothesis Generation for Scientific Discovery in the Era of Large Language Models [0.9383505015433911]
大規模言語モデル(LLM)は仮説生成の強化と自動化への関心が高まっている。
本稿では,LLMを用いた仮説生成に関する包括的調査を行う。
論文 参考訳(メタデータ) (2025-04-07T20:44:33Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オンロジはドメインの知識とメタデータを表現するために広く使われている。
直接支援できる論理的推論は、学習、近似、予測において非常に限られています。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents [40.14152484201402]
本研究では,人間と地球外文明の複雑な相互作用をシミュレーションするために,Large Language Models (LLM) を用いた革新的な人工知能システムであるCosmoAgentを紹介する。
本手法により,文明の成長軌跡を定量的に分析し,成長・飽和の重要な点での今後の意思決定の洞察を提供する。
この革新的な研究は、潜在的な文明間力学を解釈する新しい方法を導入するだけでなく、異なる価値体系を持つ実体が、非対称情報の下でのゲームの実行、競合の防止、およびゲームへの関与を可能にする実践的な価値も持っている。
論文 参考訳(メタデータ) (2024-02-20T17:49:46Z) - Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design [0.0]
トランスフォーマーニューラルネットワークは、特に材料分析、設計、製造において、有望な能力を示す。
本稿では,教材の工学的分析を支援するツールとして,大規模言語モデル(LLM)の利用について検討する。
論文 参考訳(メタデータ) (2023-10-30T20:31:50Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - AI-Assisted Discovery of Quantitative and Formal Models in Social
Science [6.39651637213537]
本システムは,経済・社会学における実世界のデータから解釈可能なモデルを発見するのに有効であることを示す。
本稿では,このAI支援フレームワークが,社会科学研究でよく用いられるパラメトリックモデルと非パラメトリックモデルとを橋渡しすることができることを提案する。
論文 参考訳(メタデータ) (2022-10-02T16:25:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。