論文の概要: Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2505.04664v1
- Date: Wed, 07 May 2025 03:54:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.619282
- Title: Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence
- Title(参考訳): 3次元医用画像セグメンテーションの進歩 : 人工知能における平面ニューラルネットワークの可能性
- Authors: Ziyuan Huang, Kevin Huggins, Srikar Bellur,
- Abstract要約: PNN-UNetは、平面ニューラルネットワーク構造を複製するディープニューラルネットワークを構築する方法である。
PNN-UNetは、ディープ・UNetとワイド・UNetを神経コードとして構成し、密結合されたオートエンコーダが脳の役割を担っている。
画像分割において,PNN-UNetがベースラインUNetより優れていることを示す。
- 参考スコア(独自算出の注目度): 6.3447893760573955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our study presents PNN-UNet as a method for constructing deep neural networks that replicate the planarian neural network (PNN) structure in the context of 3D medical image data. Planarians typically have a cerebral structure comprising two neural cords, where the cerebrum acts as a coordinator, and the neural cords serve slightly different purposes within the organism's neurological system. Accordingly, PNN-UNet comprises a Deep-UNet and a Wide-UNet as the nerve cords, with a densely connected autoencoder performing the role of the brain. This distinct architecture offers advantages over both monolithic (UNet) and modular networks (Ensemble-UNet). Our outcomes on a 3D MRI hippocampus dataset, with and without data augmentation, demonstrate that PNN-UNet outperforms the baseline UNet and several other UNet variants in image segmentation.
- Abstract(参考訳): 本研究では,PNN-UNetを3次元医用画像データの文脈でPNN構造を再現するディープニューラルネットワークの構築手法として提案する。
プラナリアンは通常、2つの神経系からなる脳構造を持ち、脳はコーディネーターとして機能し、神経系は神経系においてわずかに異なる目的を果たす。
したがって、PNN-UNetはディープ・UNetとワイド・UNetを神経コードとして構成し、密結合されたオートエンコーダが脳の役割を担っている。
この異なるアーキテクチャは、モノリシック(UNet)とモジュールネットワーク(Ensemble-UNet)の両方に対して利点がある。
PNN-UNetは3次元MRI海馬データセットにおいて,画像セグメンテーションにおいてベースラインのUNetと他のいくつかのUNetよりも優れていることを示す。
関連論文リスト
- Joint Learning Neuronal Skeleton and Brain Circuit Topology with Permutation Invariant Encoders for Neuron Classification [33.47541392305739]
本稿では,スケルトンから得られるニューロンの形態情報と神経回路から得られるニューロン間のトポロジ情報を組み合わせたNeuNetフレームワークを提案する。
我々は、ヒト大脳皮質とショウジョウバエ脳の体積電子顕微鏡(VEM)画像からニューロン分類タスクのための2つの新しいデータセットを再処理し、リリースする。
論文 参考訳(メタデータ) (2023-12-22T08:31:11Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Multi-pooling 3D Convolutional Neural Network for fMRI Classification of
Visual Brain States [3.19429184376611]
本稿では,fMRI分類精度を向上させるために,マルチプール3次元畳み込みニューラルネットワーク(MP3DCNN)を提案する。
MP3DCNNは主に3層3DCNNで構成されており、3D畳み込みの第1層と第2層はそれぞれプール接続の分岐を持つ。
論文 参考訳(メタデータ) (2023-03-25T07:54:51Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
我々は、二項ニューラルネットワークの決定関数を、順序付き二項決定図(OBDD)や意味決定図(SDD)などの抽出可能な表現にコンパイルすることを検討する。
実験では,SDDとしてニューラルネットワークのコンパクトな表現を得ることが可能であることを示す。
論文 参考訳(メタデータ) (2020-04-05T03:21:26Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。