ADNP-15: An Open-Source Histopathological Dataset for Neuritic Plaque Segmentation in Human Brain Whole Slide Images with Frequency Domain Image Enhancement for Stain Normalization
- URL: http://arxiv.org/abs/2505.05041v1
- Date: Thu, 08 May 2025 08:25:44 GMT
- Title: ADNP-15: An Open-Source Histopathological Dataset for Neuritic Plaque Segmentation in Human Brain Whole Slide Images with Frequency Domain Image Enhancement for Stain Normalization
- Authors: Chenxi Zhao, Jianqiang Li, Qing Zhao, Jing Bai, Susana Boluda, Benoit Delatour, Lev Stimmer, Daniel Racoceanu, Gabriel Jimenez, Guanghui Fu,
- Abstract summary: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by amyloid-beta plaques and tau neurofibrillary tangles.<n>The identification and segmentation of these lesions are crucial for understanding AD progression.<n>Deep learning has emerged as a powerful tool for pathology image segmentation.
- Score: 7.9997900784270035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by amyloid-beta plaques and tau neurofibrillary tangles, which serve as key histopathological features. The identification and segmentation of these lesions are crucial for understanding AD progression but remain challenging due to the lack of large-scale annotated datasets and the impact of staining variations on automated image analysis. Deep learning has emerged as a powerful tool for pathology image segmentation; however, model performance is significantly influenced by variations in staining characteristics, necessitating effective stain normalization and enhancement techniques. In this study, we address these challenges by introducing an open-source dataset (ADNP-15) of neuritic plaques (i.e., amyloid deposits combined with a crown of dystrophic tau-positive neurites) in human brain whole slide images. We establish a comprehensive benchmark by evaluating five widely adopted deep learning models across four stain normalization techniques, providing deeper insights into their influence on neuritic plaque segmentation. Additionally, we propose a novel image enhancement method that improves segmentation accuracy, particularly in complex tissue structures, by enhancing structural details and mitigating staining inconsistencies. Our experimental results demonstrate that this enhancement strategy significantly boosts model generalization and segmentation accuracy. All datasets and code are open-source, ensuring transparency and reproducibility while enabling further advancements in the field.
Related papers
- An Explainable Transformer Model for Alzheimer's Disease Detection Using Retinal Imaging [5.3785187022022845]
Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide.<n>In this study, we propose Retformer, a novel transformer-based architecture for detecting AD using retinal imaging modalities.
arXiv Detail & Related papers (2025-07-06T06:40:42Z) - Towards Better Cephalometric Landmark Detection with Diffusion Data Generation [43.381003080365254]
We develop an innovative data generation method capable of producing diverse cephalometric X-ray images along with corresponding annotations without human intervention.<n>By leveraging detailed prompts, our method improves the generation process to control different styles and attributes.<n>Compared to methods without using the generated data, our approach improves the Success Detection Rate (SDR) by 6.5%, attaining a notable 82.2%.
arXiv Detail & Related papers (2025-05-09T13:50:27Z) - Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.<n>We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
We propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.<n>By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach.<n>Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - FundusGAN: A Hierarchical Feature-Aware Generative Framework for High-Fidelity Fundus Image Generation [35.46876389599076]
FundusGAN is a novel hierarchical feature-aware generative framework specifically designed for high-fidelity fundus image synthesis.<n>We show that FundusGAN consistently outperforms state-of-the-art methods across multiple metrics.
arXiv Detail & Related papers (2025-03-22T18:08:07Z) - DGSSA: Domain generalization with structural and stylistic augmentation for retinal vessel segmentation [17.396365010722423]
Retinal vascular morphology is crucial for diagnosing diseases such as diabetes, glaucoma, and hypertension.<n>Traditional segmentation methods assume that training and testing data share similar distributions, which can lead to poor performance on unseen domains.<n>This paper presents a novel approach, DGSSA, for retinal vessel image segmentation that enhances model generalization by combining structural and style augmentation strategies.
arXiv Detail & Related papers (2025-01-07T01:47:57Z) - Dataset Distillation for Histopathology Image Classification [46.04496989951066]
We introduce a novel dataset distillation algorithm tailored for histopathology image datasets (Histo-DD)
We conduct a comprehensive evaluation of the effectiveness of the proposed algorithm and the generated histopathology samples in both patch-level and slide-level classification tasks.
arXiv Detail & Related papers (2024-08-19T05:53:38Z) - White Matter Geometry-Guided Score-Based Diffusion Model for Tissue Microstructure Imputation in Tractography Imaging [8.994860310545532]
Parcellation of white matter tractography provides anatomical features for disease prediction, anatomical tract segmentation, surgical brain mapping, and non-imaging phenotype classifications.
We propose a novel deep-learning model to impute tissue microstructure: the White Matter Geometry-guided Diffusion (WMG-Diff) model.
arXiv Detail & Related papers (2024-07-28T10:40:32Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - StyPath: Style-Transfer Data Augmentation For Robust Histology Image
Classification [6.690876060631452]
We propose a novel pipeline to build robust deep neural networks for AMR classification based on StyPath.
Each image was generated in 1.84 + 0.03 seconds using a single GTX V TITAN and pytorch.
Our results imply that our style-transfer augmentation technique improves histological classification performance.
arXiv Detail & Related papers (2020-07-09T18:02:49Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.