論文の概要: Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
- arxiv url: http://arxiv.org/abs/2505.05242v1
- Date: Thu, 08 May 2025 13:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.903781
- Title: Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
- Title(参考訳): アクティブラーニングによる治療効果評価の強化--対実被覆の視点から
- Authors: Hechuan Wen, Tong Chen, Mingming Gong, Li Kheng Chai, Shazia Sadiq, Hongzhi Yin,
- Abstract要約: 治療効果推定のための複雑なアルゴリズムは、不十分なラベル付きトレーニングセットを扱う際には効果がない。
我々は,最適化目標をtextitFactual と textitCounterfactual Coverage Maximization に変換して,データ取得時の有効半径削減を実現するFCCMを提案する。
FCCMを他のベースラインに対してベンチマークすることは、完全に合成されたデータセットと半合成されたデータセットの両方にその優位性を示す。
- 参考スコア(独自算出の注目度): 61.284843894545475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although numerous complex algorithms for treatment effect estimation have been developed in recent years, their effectiveness remains limited when handling insufficiently labeled training sets due to the high cost of labeling the effect after treatment, e.g., expensive tumor imaging or biopsy procedures needed to evaluate treatment effects. Therefore, it becomes essential to actively incorporate more high-quality labeled data, all while adhering to a constrained labeling budget. To enable data-efficient treatment effect estimation, we formalize the problem through rigorous theoretical analysis within the active learning context, where the derived key measures -- \textit{factual} and \textit{counterfactual covering radius} determine the risk upper bound. To reduce the bound, we propose a greedy radius reduction algorithm, which excels under an idealized, balanced data distribution. To generalize to more realistic data distributions, we further propose FCCM, which transforms the optimization objective into the \textit{Factual} and \textit{Counterfactual Coverage Maximization} to ensure effective radius reduction during data acquisition. Furthermore, benchmarking FCCM against other baselines demonstrates its superiority across both fully synthetic and semi-synthetic datasets.
- Abstract(参考訳): 近年, 治療効果評価のための複雑なアルゴリズムが数多く開発されているが, 治療効果評価に必要な高価な腫瘍画像や生検などの治療効果のラベル付けコストが高いため, トレーニングセットのラベル付けが不十分な場合に有効性は限られている。
したがって、制約付きラベル付け予算を順守しながら、より高品質なラベル付きデータを積極的に組み込むことが不可欠である。
データ効率のよい処理効果推定を実現するために,本研究は,学習コンテキスト内での厳密な理論的解析を通じて問題を定式化し,そこから導出したキー測度 -- \textit{factual} と \textit{counterfactual cover radius} がリスク上限を決定する。
境界を小さくするために,理想化されたバランスの取れたデータ分布を最適化したグリーディ半径削減アルゴリズムを提案する。
より現実的なデータ分布を一般化するために、さらにFCCMを提案する。これは、最適化の目的をデータ取得時の有効半径削減を確保するために、 \textit{Factual} と \textit{Counterfactual Coverage Maximization} に変換する。
さらに、FCCMを他のベースラインと比較すると、完全に合成されたデータセットと半合成されたデータセットの両方にその優位性を示す。
関連論文リスト
- Progressive Generalization Risk Reduction for Data-Efficient Causal Effect Estimation [30.49865329385806]
因果効果推定(英: Causal effect Estimation、CEE)は、エンティティの観測されていない反事実結果を予測する重要なツールである。
本稿では,ラベル付きデータサンプルが最初から不足している,より現実的なCEE設定について検討する。
バッチワイズラベル取得のためのモデルアグノスティック因果アクティブラーニング(MACAL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-18T03:17:40Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
共変量によって表現される情報のサブセットを調整可能なフレームワークを提案する。
理論的な結果に基づいて,平均処理効果(ATE)の効率的な評価を目的とした,デバイアスドアウトカム適応確率推定器(DOPE)を提案する。
その結果,DOPE は様々な観測環境において ATE 推定のための効率的かつ堅牢な手法を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-20T13:02:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies [1.6457778420360534]
任意の損失関数を強固化するために, 外部抵抗推定の枠組みを導入する。
通常のデータセットでは、データ再見積の回数を大幅に削減できるような、開始点の要件を緩和する新しい手法が提案されている。
得られた推定器は、必ずしも大域的でも大域的でもなくても、両方の低次元において最適性を楽しむことができる。
論文 参考訳(メタデータ) (2021-12-15T20:35:21Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer
Treatment-Effects from Observational Data [37.15330590319357]
既存のアプローチは、治療と管理のために観察された結果に深いモデルを適用することに依存している。
Deep Bayesian Active Learningは、不確実性の高い点を選択することによって、効率的なデータ取得のためのフレームワークを提供する。
本稿では,重なり合う領域に対するバイアスデータ取得という情報理論に基づく因果的ベイズ獲得機能を紹介する。
論文 参考訳(メタデータ) (2021-11-03T15:11:39Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Causal Inference of General Treatment Effects using Neural Networks with
A Diverging Number of Confounders [12.105996764226227]
非確立状態下では、共同設立者に対する調整は、非パラメトリックな共同設立者に対して結果や治療に関連する迷惑関数を見積もる必要がある。
本稿では,ニューラルネットワーク(ANN)を用いた一般的な治療効果の効率的な評価のための一般化された最適化手法について考察する。
論文 参考訳(メタデータ) (2020-09-15T13:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。