論文の概要: Representing spherical tensors with scalar-based machine-learning models
- arxiv url: http://arxiv.org/abs/2505.05404v1
- Date: Thu, 08 May 2025 16:45:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.96374
- Title: Representing spherical tensors with scalar-based machine-learning models
- Title(参考訳): スカラー機械学習モデルによる球面テンソルの表現
- Authors: Michelangelo Domina, Filippo Bigi, Paolo Pegolo, Michele Ceriotti,
- Abstract要約: 3次元点雲の同変モデルは、回転群の構造と完全に整合した方法で構造-固有関係を近似することができる。
対称性の制約により、このアプローチは計算的に要求され、実装が困難になる。
本稿では,普遍的な近似特性に欠ける汎用表現の近似法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rotational symmetry plays a central role in physics, providing an elegant framework to describe how the properties of 3D objects -- from atoms to the macroscopic scale -- transform under the action of rigid rotations. Equivariant models of 3D point clouds are able to approximate structure-property relations in a way that is fully consistent with the structure of the rotation group, by combining intermediate representations that are themselves spherical tensors. The symmetry constraints however make this approach computationally demanding and cumbersome to implement, which motivates increasingly popular unconstrained architectures that learn approximate symmetries as part of the training process. In this work, we explore a third route to tackle this learning problem, where equivariant functions are expressed as the product of a scalar function of the point cloud coordinates and a small basis of tensors with the appropriate symmetry. We also propose approximations of the general expressions that, while lacking universal approximation properties, are fast, simple to implement, and accurate in practical settings.
- Abstract(参考訳): 回転対称性は物理学において中心的な役割を担い、原子からマクロスケールへの3次元物体の性質が剛性回転の作用の下でどのように変化するかを記述するエレガントな枠組みを提供する。
3次元点雲の同変モデルは、自転群の構造と完全に整合した方法で構造-固有関係を近似することができ、それ自体が球面テンソルである中間表現を組み合わせることができる。
しかし、対称性の制約は、このアプローチを計算的に要求し、実装しづらいものにし、トレーニングプロセスの一部として近似対称性を学習する人気のないアーキテクチャを動機付けている。
本研究では、この学習問題に取り組むための第3の経路を探究し、同変関数を点雲座標のスカラー関数の積として表現し、適切な対称性を持つテンソルの小さな基底とする。
また,普遍的な近似特性に欠ける汎用表現の近似も提案する。
関連論文リスト
- Learning Shape-Independent Transformation via Spherical Representations for Category-Level Object Pose Estimation [42.48001557547222]
カテゴリーレベルのオブジェクトポーズ推定は、特定のカテゴリにおける新しいオブジェクトのポーズとサイズを決定することを目的としている。
既存の対応に基づくアプローチは、通常、原始的な観測点と正規化されたオブジェクト座標の間の対応を確立するために点ベースの表現を採用する。
SpherePoseと呼ばれる新しいアーキテクチャを導入し、3つのコア設計を通して正確な対応予測を行う。
論文 参考訳(メタデータ) (2025-03-18T05:43:42Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - Current Symmetry Group Equivariant Convolution Frameworks for Representation Learning [5.802794302956837]
ユークリッドの深層学習はしばしば、表現空間が不規則で複雑な位相で湾曲した実世界の信号に対処するのに不十分である。
我々は、対称性群同変深層学習モデルの重要性と、グラフや3次元形状、非ユークリッド空間における畳み込みのような操作の実現に焦点を当てる。
論文 参考訳(メタデータ) (2024-09-11T15:07:18Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Binding Dynamics in Rotating Features [72.80071820194273]
本稿では,特徴間のアライメントを明示的に計算し,それに応じて重みを調整する「コサイン結合」機構を提案する。
これにより、自己注意と生物学的神経プロセスに直接接続し、回転する特徴に現れるオブジェクト中心の表現の基本的なダイナミクスに光を当てることができます。
論文 参考訳(メタデータ) (2024-02-08T12:31:08Z) - A Unified Framework for Discovering Discrete Symmetries [17.687122467264487]
対称性を尊重する関数を対称性のクラスから学習する問題を考察する。
我々は、幅広いサブグループにわたる対称性の発見を可能にする統一的なフレームワークを開発する。
論文 参考訳(メタデータ) (2023-09-06T10:41:30Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
入力空間(例えば画像)を符号化する学習対称埋め込みネットワーク(SEN)を提案する。
このネットワークは、同変のタスクネットワークでエンドツーエンドにトレーニングして、明示的に対称な表現を学ぶことができる。
実験により、SENは複素対称性表現を持つデータへの同変ネットワークの適用を促進することを示した。
論文 参考訳(メタデータ) (2022-04-24T22:31:52Z) - 3D Equivariant Graph Implicit Functions [51.5559264447605]
局所的詳細のモデリングを容易にする同変層を持つグラフ暗黙関数の新しいファミリを導入する。
提案手法は,ShapeNet再構成作業において既存の回転同変暗黙関数を0.69から0.89に改善する。
論文 参考訳(メタデータ) (2022-03-31T16:51:25Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。