Quantum Simulation of Dynamical Response Functions of Equilibrium States
- URL: http://arxiv.org/abs/2505.05411v1
- Date: Thu, 08 May 2025 16:52:11 GMT
- Title: Quantum Simulation of Dynamical Response Functions of Equilibrium States
- Authors: Esther Cruz, Dominik S. Wild, Mari Carmen BaƱuls, J. Ignacio Cirac,
- Abstract summary: The computation of dynamical response functions is central to many problems in condensed matter physics.<n>Existing approaches often assume access to the equilibrium state, which may be difficult to prepare in practice.<n>We present a method that circumvents this by using energy filter techniques.
- Score: 0.29998889086656577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computation of dynamical response functions is central to many problems in condensed matter physics. Owing to the rapid growth of quantum correlations following a quench, classical methods face significant challenges even if an efficient description of the equilibrium state is available. Quantum computing offers a promising alternative. However, existing approaches often assume access to the equilibrium state, which may be difficult to prepare in practice. In this work, we present a method that circumvents this by using energy filter techniques, enabling the computation of response functions and other dynamical properties in both microcanonical and canonical ensembles. Our approach only requires the preparation of states that have significant weight at the desired energy. The dynamical response functions are then reconstructed from measurements after quenches of varying duration by classical postprocessing. We illustrate the algorithm numerically by applying it to compute the dynamical conductivity of a free-fermion model, which unveils the energy-dependent localization properties of the model.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Modeling Stochastic Chemical Kinetics on Quantum Computers [0.0]
We show how quantum algorithms can be employed to model chemical kinetics using the Schl"ogl Model of a trimolecular reaction network.
Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode.
arXiv Detail & Related papers (2024-04-12T18:53:38Z) - Exact solution to quantum dynamical activity [1.6574413179773757]
We present the exact solution for the quantum dynamical activity by deploying the continuous matrix product state method.
We also determine the upper bound of the dynamical activity, which comprises the standard deviation of the system Hamiltonian and jump operators.
arXiv Detail & Related papers (2023-11-21T14:22:35Z) - A linear response framework for simulating bosonic and fermionic
correlation functions illustrated on quantum computers [58.720142291102135]
Lehmann formalism for obtaining response functions in linear response has no direct link to experiment.
Within the context of quantum computing, we make the experiment an inextricable part of the quantum simulation.
We show that both bosonic and fermionic Green's functions can be obtained, and apply these ideas to the study of a charge-density-wave material.
arXiv Detail & Related papers (2023-02-20T19:01:02Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - An efficient method for quantum impurity problems out of equilibrium [0.0]
We introduce an efficient method to simulate dynamics of an interacting quantum impurity coupled to non-interacting fermionic reservoirs.
We apply our method to study quantum quenches and transport in an Anderson impurity model, including highly non-equilibrium setups.
This approach will provide new insights into dynamical properties of mesoscopic devices and correlated materials.
arXiv Detail & Related papers (2022-11-18T14:57:29Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Time-Dependent Self Consistent Harmonic Approximation: Anharmonic
nuclear quantum dynamics and time correlation functions [0.0]
We derive an approximate theory for the quantum time evolution of lattice vibrations at finite temperature.
We apply perturbation theory around the static SCHA solution and derive an algorithm to compute efficiently quantum dynamical response functions.
arXiv Detail & Related papers (2020-11-30T16:56:50Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.