論文の概要: This part looks alike this: identifying important parts of explained instances and prototypes
- arxiv url: http://arxiv.org/abs/2505.05597v1
- Date: Thu, 08 May 2025 18:54:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.054854
- Title: This part looks alike this: identifying important parts of explained instances and prototypes
- Title(参考訳): 説明されたインスタンスとプロトタイプの重要な部分を特定する。
- Authors: Jacek Karolczak, Jerzy Stefanowski,
- Abstract要約: そこで本研究では,プロトタイプ内で最も情報に富む特徴を識別する手法を提案する。
説明手法から得られた特徴重要度スコアを用いて、インスタンスと最も近いプロトタイプとの間に最も関連性の高い重なり合う特徴を強調する。
- 参考スコア(独自算出の注目度): 2.693342141713236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although prototype-based explanations provide a human-understandable way of representing model predictions they often fail to direct user attention to the most relevant features. We propose a novel approach to identify the most informative features within prototypes, termed alike parts. Using feature importance scores derived from an agnostic explanation method, it emphasizes the most relevant overlapping features between an instance and its nearest prototype. Furthermore, the feature importance score is incorporated into the objective function of the prototype selection algorithms to promote global prototypes diversity. Through experiments on six benchmark datasets, we demonstrate that the proposed approach improves user comprehension while maintaining or even increasing predictive accuracy.
- Abstract(参考訳): プロトタイプベースの説明は、モデル予測を表現する人間の理解可能な方法を提供するが、しばしば、最も関連する機能にユーザーの注意を向けることに失敗する。
そこで本研究では,プロトタイプ内で最も情報に富む特徴を識別する手法を提案する。
非依存的な説明法から得られた特徴重要度スコアを用いて、インスタンスと最も近いプロトタイプとの間の最も関連性の高い重なり合う特徴を強調する。
さらに、グローバルなプロトタイプの多様性を促進するために、プロトタイプ選択アルゴリズムの目的機能に特徴重要度スコアが組み込まれている。
6つのベンチマークデータセットの実験を通して、提案手法は予測精度を維持したり、さらに向上させたりしながら、ユーザの理解を向上させることを実証する。
関連論文リスト
- Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
意味的セグメンテーションを解釈可能なものにするための、有望なアプローチとして、プロトタイプ的な部分学習が登場している。
本稿では,多スケール画像表現を利用した意味的セグメンテーションの解釈手法を提案する。
Pascal VOC,Cityscapes,ADE20Kで行った実験により,提案手法はモデルの疎結合性を高め,既存のプロトタイプ手法よりも解釈可能性を高め,非解釈可能なモデルとの性能ギャップを狭めることを示した。
論文 参考訳(メタデータ) (2024-09-14T17:52:59Z) - ProtoP-OD: Explainable Object Detection with Prototypical Parts [0.0]
本稿では、原型的局所特徴を構築し、オブジェクト検出に使用するトランスフォーマーの検出拡張を提案する。
提案した拡張は、プロトタイプアクティベーションの離散化表現を演算するボトルネックモジュール、プロトタイプネックで構成されている。
論文 参考訳(メタデータ) (2024-02-29T13:25:15Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
少数ショット学習は、いくつかの例で新しいクラスを認識することを目的としている。
事前学習に基づく手法は,特徴抽出器を事前学習し,最寄りのセントロイド型メタラーニングを通して微調整することで,この問題に効果的に対処する。
本稿では,完成度に基づくメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:44:00Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。