Smart Starts: Accelerating Convergence through Uncommon Region Exploration
- URL: http://arxiv.org/abs/2505.05661v1
- Date: Thu, 08 May 2025 21:36:14 GMT
- Title: Smart Starts: Accelerating Convergence through Uncommon Region Exploration
- Authors: Xinyu Zhang, Mário Antunes, Tyler Estro, Erez Zadok, Klaus Mueller,
- Abstract summary: This study introduces a hybrid strategy combining empty-space search algorithm (ESA) and opposition-based learning (OBL)<n>OBL initially generates a diverse population, subsequently augmented by ESA, which identifies under-explored regions.<n>This synergy enhances population diversity, accelerates convergence, and improves EA performance on complex, high-dimensional optimization problems.
- Score: 22.806659781921432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Initialization profoundly affects evolutionary algorithm (EA) efficacy by dictating search trajectories and convergence. This study introduces a hybrid initialization strategy combining empty-space search algorithm (ESA) and opposition-based learning (OBL). OBL initially generates a diverse population, subsequently augmented by ESA, which identifies under-explored regions. This synergy enhances population diversity, accelerates convergence, and improves EA performance on complex, high-dimensional optimization problems. Benchmark results demonstrate the proposed method's superiority in solution quality and convergence speed compared to conventional initialization techniques.
Related papers
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
arXiv Detail & Related papers (2024-07-22T23:24:03Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy [9.252838762325927]
The Henon chaotic mapping theory and elite population strategy are proposed to improve the randomness and diversity of the vulture's initial population.
The reverse learning competition strategy is designed to expand the discovery fields for the optimal solution.
The proposed HWEAVOA is ranked first in all test functions, which is superior to the comparison algorithms in convergence speed, optimization ability, and solution stability.
arXiv Detail & Related papers (2024-03-22T01:20:45Z) - Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA) [11.450701963760817]
This paper introduces a Multi-Strategy Improved Black Widow Optimization Algorithm (MSBWOA)
It is designed to enhance the performance of the standard Black Widow Algorithm (BW) in solving complex optimization problems.
It integrates four key strategies: initializing the population using Tent chaotic mapping to enhance diversity and initial exploratory capability; implementing mutation optimization on the least fit individuals to maintain dynamic population and prevent premature convergence; and adding a random perturbation strategy to enhance the algorithm's ability to escape local optima.
arXiv Detail & Related papers (2023-12-20T19:55:36Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - A Hybrid Chimp Optimization Algorithm and Generalized Normal
Distribution Algorithm with Opposition-Based Learning Strategy for Solving
Data Clustering Problems [0.0]
This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups.
Successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time.
arXiv Detail & Related papers (2023-02-16T23:29:01Z) - Communication-Efficient Federated Bilevel Optimization with Local and
Global Lower Level Problems [118.00379425831566]
We propose a communication-efficient algorithm, named FedBiOAcc.
We prove that FedBiOAcc-Local converges at the same rate for this type of problems.
Empirical results show superior performance of our algorithms.
arXiv Detail & Related papers (2023-02-13T21:28:53Z) - Hybrid Henry Gas Solubility Optimization Algorithm with Dynamic
Cluster-to-Algorithm Mapping for Search-based Software Engineering Problems [1.0323063834827413]
This paper discusses a new variant of the Henry Gas Solubility Optimization (HGSO) Algorithm, called Hybrid HGSO (HHGSO)
Unlike its predecessor, HHGSO allows multiple clusters serving different individual meta-heuristic algorithms to coexist within the same population.
Exploiting the dynamic cluster-to-algorithm mapping via penalized and reward model with adaptive switching factor, HHGSO offers a novel approach for meta-heuristic hybridization.
arXiv Detail & Related papers (2021-05-31T12:42:15Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.