An Efficient Transport-Based Dissimilarity Measure for Time Series Classification under Warping Distortions
- URL: http://arxiv.org/abs/2505.05676v2
- Date: Wed, 14 May 2025 19:26:04 GMT
- Title: An Efficient Transport-Based Dissimilarity Measure for Time Series Classification under Warping Distortions
- Authors: Akram Aldroubi, Rocío Díaz Martín, Ivan Medri, Kristofor E. Pas, Gustavo K. Rohde, Abu Hasnat Mohammad Rubaiyat,
- Abstract summary: We show that a continuous version of 1NN-DTW method can solve the stated problem, even when only one training sample is available.<n>In addition, we propose an alternative dissimilarity measure based on Optimal Transport and show that it can also solve the aforementioned problem statement at a significantly reduced computational cost.
- Score: 4.524576840448699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time Series Classification (TSC) is an important problem with numerous applications in science and technology. Dissimilarity-based approaches, such as Dynamic Time Warping (DTW), are classical methods for distinguishing time series when time deformations are confounding information. In this paper, starting from a deformation-based model for signal classes we define a problem statement for time series classification problem. We show that, under theoretically ideal conditions, a continuous version of classic 1NN-DTW method can solve the stated problem, even when only one training sample is available. In addition, we propose an alternative dissimilarity measure based on Optimal Transport and show that it can also solve the aforementioned problem statement at a significantly reduced computational cost. Finally, we demonstrate the application of the newly proposed approach in simulated and real time series classification data, showing the efficacy of the method.
Related papers
- Structural Classification of Locally Stationary Time Series Based on Second-order Characteristics [18.368110934638207]
We present a numerically efficient, practically competitive, and theoretically rigorous classification method for distinguishing between two classes of locally stationary time series.<n>Our approach builds on the autoregressive approximation for locally stationary time series, combined with an ensemble aggregation and a distance-based threshold for classification.<n>It imposes no requirement on the training sample size, and is shown to achieve zero misclassification error rate.
arXiv Detail & Related papers (2025-07-06T04:00:26Z) - Adaptive Classification of Interval-Valued Time Series [0.0]
We propose an adaptive approach for interval-valued time series classification.<n>We transform interval-valued time series representations into images based on point-valued time series imaging methods.
arXiv Detail & Related papers (2025-04-04T09:52:40Z) - Point processes with event time uncertainty [16.64005584511643]
We introduce a framework to model time-uncertain point processes possibly on a network.
We experimentally show that the proposed approach outperforms previous General Linear model (GLM) baselines on simulated and real data.
arXiv Detail & Related papers (2024-11-05T00:46:09Z) - Shapelet-based Model-agnostic Counterfactual Local Explanations for Time
Series Classification [5.866975269666861]
We propose a model-agnostic instance-based post-hoc explainability method for time series classification.
The proposed algorithm, namely Time-CF, leverages shapelets and TimeGAN to provide counterfactual explanations for arbitrary time series classifiers.
arXiv Detail & Related papers (2024-02-02T11:57:53Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
Event sequences are non-uniform and sparse, making traditional models unsuitable.
We propose COTIC, a method based on an efficient convolution neural network designed to handle the non-uniform occurrence of events over time.
COTIC outperforms existing models in predicting the next event time and type, achieving an average rank of 1.5 compared to 3.714 for the nearest competitor.
arXiv Detail & Related papers (2023-02-13T10:34:51Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
Early Time-Series Classification (ETSC) is the task of predicting the class of incoming time-series by observing as few measurements as possible.
We evaluate six existing ETSC algorithms on publicly available data, as well as on two newly introduced datasets.
arXiv Detail & Related papers (2022-03-03T10:43:56Z) - TimeREISE: Time-series Randomized Evolving Input Sample Explanation [5.557646286040063]
TimeREISE is a model attribution method specifically aligned to success in the context of time series classification.
The method shows superior performance compared to existing approaches concerning different well-established measurements.
arXiv Detail & Related papers (2022-02-16T09:40:13Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Series is a novel end-to-end approach that reprograms acoustic models for time series classification.
We show that V2S either outperforms or is tied with state-of-the-art methods on 20 tasks, and improves their average accuracy by 1.84%.
arXiv Detail & Related papers (2021-06-17T07:59:15Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - The Variational Method of Moments [65.91730154730905]
conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables.
Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem.
We provide algorithms for valid statistical inference based on the same kind of variational reformulations.
arXiv Detail & Related papers (2020-12-17T07:21:06Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
We propose a new regularization technique: randomly sampling the end time of the ODE during training.
The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks.
We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.
arXiv Detail & Related papers (2020-06-18T17:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.