論文の概要: Privacy-Preserving Credit Card Approval Using Homomorphic SVM: Toward Secure Inference in FinTech Applications
- arxiv url: http://arxiv.org/abs/2505.05920v1
- Date: Fri, 09 May 2025 09:46:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.224295
- Title: Privacy-Preserving Credit Card Approval Using Homomorphic SVM: Toward Secure Inference in FinTech Applications
- Title(参考訳): 準同型SVMを用いたプライバシ保護型クレジットカード承認:フィンテックアプリケーションにおけるセキュア推論に向けて
- Authors: Faneela, Baraq Ghaleb, Jawad Ahmad, William J. Buchanan, Sana Ullah Jan,
- Abstract要約: PP-FinTechは金融アプリケーションのためのプライバシー保護スキームである。
CKKSベースの暗号化ソフトマージンSVMを採用し、非線形パターンをモデル化するためのハイブリッドカーネルで拡張されている。
- 参考スコア(独自算出の注目度): 0.5991851254194097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing use of machine learning in cloud environments raises critical concerns about data security and privacy, especially in finance. Fully Homomorphic Encryption (FHE) offers a solution by enabling computations on encrypted data, but its high computational cost limits practicality. In this paper, we propose PP-FinTech, a privacy-preserving scheme for financial applications that employs a CKKS-based encrypted soft-margin SVM, enhanced with a hybrid kernel for modeling non-linear patterns and an adaptive thresholding mechanism for robust encrypted classification. Experiments on the Credit Card Approval dataset demonstrate comparable performance to the plaintext models, highlighting PP-FinTech's ability to balance privacy, and efficiency in secure financial ML systems.
- Abstract(参考訳): クラウド環境における機械学習の利用の増加は、特に金融において、データセキュリティとプライバシに関する重要な懸念を提起する。
FHE(Fully Homomorphic Encryption)は、暗号化されたデータの計算を可能にするソリューションを提供するが、その高い計算コストは実用性を制限する。
本稿では,CKKSベースの暗号化ソフトマージンSVMを用いた金融アプリケーションのためのプライバシ保護手法であるPP-FinTechを提案する。
Credit Card Approvalデータセットの実験では、セキュアな金融MLシステムのプライバシと効率のバランスをとるPP-FinTechの能力が、プレーンテキストモデルに匹敵するパフォーマンスを示している。
関連論文リスト
- Privacy-Preserving Graph-Based Machine Learning with Fully Homomorphic Encryption for Collaborative Anti-Money Laundering [4.1964397179107085]
本研究では、協調機械学習のための新しいプライバシー保護手法を提案する。
プライバシと規制の遵守を維持しながら、機関や国境を越えたセキュアなデータ共有を容易にする。
この研究は2つの重要なプライバシー保護パイプラインに貢献している。
論文 参考訳(メタデータ) (2024-11-05T09:13:53Z) - DPFedBank: Crafting a Privacy-Preserving Federated Learning Framework for Financial Institutions with Policy Pillars [0.09363323206192666]
本稿では、金融機関が協調して機械学習モデルを開発できるようにする革新的なフレームワークDPFedBankについて述べる。
DPFedBankは、金融データに関連するユニークなプライバシとセキュリティ上の課題に対処するために設計されている。
論文 参考訳(メタデータ) (2024-10-17T16:51:56Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
プライバシ保存機械学習(PPML)メソッドは、機械学習モデルのプライバシとセキュリティを保護するために導入された。
現代の暗号方式であるHybrid Homomorphic Encryption (HHE)が最近登場した。
心電図データに基づく心疾患の分類のためのHHEベースのPPMLアプリケーションの開発と評価を行った。
論文 参考訳(メタデータ) (2024-01-26T13:12:52Z) - Privacy-Preserving Federated Learning over Vertically and Horizontally
Partitioned Data for Financial Anomaly Detection [11.167661320589488]
実世界の金融異常検出シナリオでは、データは垂直と水平の両方に分割される。
我々のソリューションは、完全同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、微分プライバシー(DP)を組み合わせる。
私たちのソリューションは、米国プライバシ・エンハンシング・テクノロジーズ(PET)賞チャレンジの第1フェーズで2位を獲得しました。
論文 参考訳(メタデータ) (2023-10-30T06:51:33Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。