An Extension of the Adiabatic Theorem
- URL: http://arxiv.org/abs/2505.06029v1
- Date: Fri, 09 May 2025 13:21:50 GMT
- Title: An Extension of the Adiabatic Theorem
- Authors: Sarah Damerow, Stefan Kehrein,
- Abstract summary: We examine the validity of a potential extension of the adiabatic theorem to quantum quenches.<n>In particular, the Transverse Field Ising Model (TFIM) and the Axial Next Nearest Neighbour Ising (ANNNI) model are studied.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine the validity of a potential extension of the adiabatic theorem to quantum quenches, i.e., non-adiabatic changes. In particular, the Transverse Field Ising Model (TFIM) and the Axial Next Nearest Neighbour Ising (ANNNI) model are studied. The proposed extension of the adiabatic theorem is stated as follows: Consider the overlap between the initial ground state and the post-quench Hamiltonian eigenstates for quenches within the same phase. This overlap is largest for the post-quench ground state. In the case of the TFIM, this conjecture is confirmed for both the paramagnetic and ferromagnetic phases numerically and analytically. In the ANNNI model, the conjecture could be analytically proven for a special case. Numerical methods were employed to investigate the conjecture's validity beyond this special case.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Variational ground-state quantum adiabatic theorem [0.0]
We present a variational quantum adiabatic theorem, which states that, under certain assumptions, the adiabatic dynamics projected onto a variational manifold follow the instantaneous variational ground state.
arXiv Detail & Related papers (2024-06-18T08:31:01Z) - Bound polariton states in the Dicke-Ising model [41.94295877935867]
We present a study of hybrid light-matter excitations in cavity QED materials.<n>We derive the exact excitations of the system in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Connecting classical finite exchangeability to quantum theory [45.76759085727843]
Exchangeability is a fundamental concept in probability theory and statistics.<n>It allows to model situations where the order of observations does not matter.<n>It is well known that both theorems do not hold for finitely exchangeable sequences.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum dissipation and the virial theorem [22.1682776279474]
We study the celebrated virial theorem for dissipative systems, both classical and quantum.
The non-Markovian nature of the quantum noise leads to novel bath-induced terms in the virial theorem.
We also consider the case of an electrical circuit with thermal noise and analyze the role of non-Markovian noise in the context of the virial theorem.
arXiv Detail & Related papers (2023-02-23T13:28:11Z) - Limit theorems for Quantum Trajectories [0.0]
We prove Law of Large Numbers (LLN), Functional Central Limit Theorem, Law of Iterated Logarithm and Moderate Deviation Principle.
Proof of the LLN is based on Birkhoff's ergodic theorem and an analysis of harmonic functions.
The other theorems are proved using martingale approximation of empirical sums.
arXiv Detail & Related papers (2023-02-13T08:57:57Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-perturbative Quantum Propagators in Bounded Spaces [0.0]
A generalised hit function is defined as a many-point propagator.
We show how it can be used to calculate the Feynman propagator.
We conjecture a general analytical formula for the propagator when Dirichlet boundary conditions are present in a given geometry.
arXiv Detail & Related papers (2021-10-11T02:47:26Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - Proof of the Contiguity Conjecture and Lognormal Limit for the Symmetric
Perceptron [21.356438315715888]
We consider the symmetric binary perceptron model, a simple model of neural networks.
We establish several conjectures for this model.
Our proof technique relies on a dense counter-part of the small graph conditioning method.
arXiv Detail & Related papers (2021-02-25T18:39:08Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.