論文の概要: United States Road Accident Prediction using Random Forest Predictor
- arxiv url: http://arxiv.org/abs/2505.06246v1
- Date: Mon, 28 Apr 2025 20:31:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-18 22:55:23.16323
- Title: United States Road Accident Prediction using Random Forest Predictor
- Title(参考訳): ランダム森林予測器を用いた米国道路事故予測
- Authors: Dominic Parosh Yamarthi, Haripriya Raman, Shamsad Parvin,
- Abstract要約: 本稿では,米国49州を対象とした包括的交通データセットの検証を通じて,事故の予測に焦点をあてる。
このデータセットは、交通部、法執行機関、交通センサーなど、さまざまなソースからの情報を統合する。
この研究の意味は、政策立案者や交通機関の積極的な意思決定にまで及んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Road accidents significantly threaten public safety and require in-depth analysis for effective prevention and mitigation strategies. This paper focuses on predicting accidents through the examination of a comprehensive traffic dataset covering 49 states in the United States. The dataset integrates information from diverse sources, including transportation departments, law enforcement, and traffic sensors. This paper specifically emphasizes predicting the number of accidents, utilizing advanced machine learning models such as regression analysis and time series analysis. The inclusion of various factors, ranging from environmental conditions to human behavior and infrastructure, ensures a holistic understanding of the dynamics influencing road safety. Temporal and spatial analysis further allows for the identification of trends, seasonal variations, and high-risk areas. The implications of this research extend to proactive decision-making for policymakers and transportation authorities. By providing accurate predictions and quantifiable insights into expected accident rates under different conditions, the paper aims to empower authorities to allocate resources efficiently and implement targeted interventions. The goal is to contribute to the development of informed policies and interventions that enhance road safety, creating a safer environment for all road users. Keywords: Machine Learning, Random Forest, Accident Prediction, AutoML, LSTM.
- Abstract(参考訳): 道路事故は公共の安全を著しく脅かし、効果的な予防と緩和戦略のために詳細な分析を必要とする。
本稿では,米国49州を対象とした包括的交通データセットの検証を通じて,事故の予測に焦点をあてる。
このデータセットは、交通部、法執行機関、交通センサーなど、さまざまなソースからの情報を統合する。
本稿では, 回帰分析や時系列解析などの高度な機械学習モデルを用いて, 事故発生数を予測することを強調する。
環境条件から人間の行動やインフラに至るまで、様々な要因が組み込まれており、道路安全に影響を与える力学の全体的理解が保証されている。
時間的・空間的な分析により、傾向、季節的変動、高リスク領域の同定が可能になる。
この研究の意味は、政策立案者や交通機関の積極的な意思決定にまで及んでいる。
異なる条件下での予測された事故率に関する正確な予測と定量的な洞察を提供することにより,資源の配分を効率化し,目標とする介入を実施することを目指す。
目標は、道路安全を強化し、すべての道路利用者にとってより安全な環境を構築するための、インフォームドポリシーと介入の開発に貢献することである。
キーワード:機械学習、ランダムフォレスト、事故予測、AutoML、LSTM。
関連論文リスト
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
軌道予測は、自動運転車における計画の安全性と効率に不可欠である。
現在のモデルでは、複雑な交通規則と潜在的な車両の動きを完全に捉えることができないことが多い。
本研究は, オフロード損失, 方向整合誤差, ダイバーシティ損失の3つの新しい損失関数を紹介する。
論文 参考訳(メタデータ) (2024-11-29T14:47:08Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
道路交通事故は世界中で公衆衛生上の脅威となっている。
本研究では,致命的および致命的でない道路事故を分類するための機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-18T12:41:56Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - AccidentGPT: Accident Analysis and Prevention from V2X Environmental
Perception with Multi-modal Large Model [32.14950866838055]
AccidentGPTは総合的な事故解析とマルチモーダル大模型の予防である。
自律走行車では、車両を制御し衝突を避けるための総合的な環境認識と理解を提供する。
人間の運転する車には、プロアクティブな長距離安全警告と盲点警告を提供します。
我々のフレームワークは、歩行者、車両、道路、環境を含む交通安全のインテリジェントでリアルタイムな分析を支援する。
論文 参考訳(メタデータ) (2023-12-20T16:19:47Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
我々は、最先端のディープラーニングベースの計画システムについてレビューし、どのように予測を統合するかに焦点を当てる。
異なる統合原則の意味、強み、限界について論じる。
論文 参考訳(メタデータ) (2023-08-10T17:53:03Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
行動意図予測(BIP)は、人間の思考過程をシミュレートし、特定の行動の早期予測を満たす。
この作業は、利用可能なデータセット、重要な要因と課題、歩行者中心および車両中心のBIPアプローチ、BIP対応アプリケーションからのBIPの包括的なレビューを提供する。
論文 参考訳(メタデータ) (2022-11-01T11:07:37Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。