論文の概要: High-Dimensional Importance-Weighted Information Criteria: Theory and Optimality
- arxiv url: http://arxiv.org/abs/2505.06531v1
- Date: Sat, 10 May 2025 06:26:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.890121
- Title: High-Dimensional Importance-Weighted Information Criteria: Theory and Optimality
- Title(参考訳): 高次元重要度情報基準:理論と最適性
- Authors: Yong-Syun Cao, Shinpei Imori, Ching-Kang Ing,
- Abstract要約: Imori と Ing (2025) は高次元不特定回帰モデルにおけるモデル選択のための重み付けグレディアルゴリズム (IWOGA) を提案した。
妥当な仮定の集合の下でIWOGA + HDIWICの最適性を確立することによって、この主張を理論的に正当化する。
- 参考スコア(独自算出の注目度): 0.40964539027092917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imori and Ing (2025) proposed the importance-weighted orthogonal greedy algorithm (IWOGA) for model selection in high-dimensional misspecified regression models under covariate shift. To determine the number of IWOGA iterations, they introduced the high-dimensional importance-weighted information criterion (HDIWIC). They argued that the combined use of IWOGA and HDIWIC, IWOGA + HDIWIC, achieves an optimal trade-off between variance and squared bias, leading to optimal convergence rates in terms of conditional mean squared prediction error. In this article, we provide a theoretical justification for this claim by establishing the optimality of IWOGA + HDIWIC under a set of reasonable assumptions.
- Abstract(参考訳): Imori と Ing (2025) は、共変量シフトの下での高次元不特定回帰モデルにおけるモデル選択のための重み付け直交グリーディアルゴリズム (IWOGA) を提案した。
IWOGAのイテレーション数を決定するため、彼らは高次元重要重み情報基準(HDIWIC)を導入した。
彼らは、IWOGAとHDIWICの組み合わせ、IWOGA + HDIWICは分散と二乗バイアスの最適なトレードオフを実現し、条件付き平均二乗予測誤差の観点で最適収束率をもたらすと主張した。
本稿では,一連の合理的仮定の下でIWOGA + HDIWICの最適性を確立することによって,この主張を理論的に正当化する。
関連論文リスト
- Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - Maximum Likelihood Estimation is All You Need for Well-Specified
Covariate Shift [34.414261291690856]
現代の機械学習システムの鍵となる課題は、アウト・オブ・ディストリビューション(OOD)の一般化を達成することである。
音源データを用いた古典的最大等化推定(MLE)が極小最適化を実現することを示す。
3つの具体例にインスタンス化することで、フレームワークの幅広い適用性を説明します。
論文 参考訳(メタデータ) (2023-11-27T16:06:48Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Information Theoretical Importance Sampling Clustering [18.248246885248733]
多くのクラスタリング手法の現在の仮定は、トレーニングデータと将来のデータが同じ分布から取られるというものである。
我々は,クラスタリング問題(itisC)に対する情報理論的重要度サンプリングに基づくアプローチを提案する。
合成データセットの実験結果と実世界の負荷予測問題により,提案モデルの有効性が検証された。
論文 参考訳(メタデータ) (2023-02-09T03:18:53Z) - An Adaptive Alternating-direction-method-based Nonnegative Latent Factor
Model [2.857044909410376]
交互方向法に基づく非負潜在因子モデルにより、高次元および不完全行列への効率的な表現学習を行うことができる。
本稿では,超パラメータ適応を粒子群最適化の原理に従って実装した適応交互方向法に基づく非負遅延因子モデルを提案する。
産業応用によって生成される非負のHDI行列に関する実証的研究は、A2NLFが計算および記憶効率においていくつかの最先端モデルより優れており、HDI行列の欠落データに対する高い競合推定精度を維持していることを示している。
論文 参考訳(メタデータ) (2022-04-11T03:04:26Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
SGLDにおけるノイズ構造を操作することにより,情報理論の一般化を最適化する。
低経験的リスクを保証するために制約を課すことで、最適なノイズ共分散が期待される勾配共分散の平方根であることを証明する。
論文 参考訳(メタデータ) (2021-10-26T15:02:27Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - High-Dimensional Quadratic Discriminant Analysis under Spiked Covariance
Model [101.74172837046382]
そこで本研究では,魚の識別比を最大化する2次分類手法を提案する。
数値シミュレーションにより,提案した分類器は,合成データと実データの両方において古典的R-QDAよりも優れるだけでなく,計算量の削減も要求されることがわかった。
論文 参考訳(メタデータ) (2020-06-25T12:00:26Z) - Skewness Ranking Optimization for Personalized Recommendation [13.68449323836318]
本稿では,スキュー正規分布を利用した新しい最適化基準を提案し,パーソナライズされたレコメンデーションの問題をモデル化する。
大規模な実世界のデータセットを用いて行った実験結果から、我々のモデルは芸術の状態を著しく上回り、一貫して最高のパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2020-05-23T00:59:22Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。