Quantum RNNs and LSTMs Through Entangling and Disentangling Power of Unitary Transformations
- URL: http://arxiv.org/abs/2505.06774v1
- Date: Sat, 10 May 2025 22:56:18 GMT
- Title: Quantum RNNs and LSTMs Through Entangling and Disentangling Power of Unitary Transformations
- Authors: Ammar Daskin,
- Abstract summary: We discuss how quantum recurrent neural networks (RNNs) and their enhanced version, long short-term memory (LSTM) networks, can be modeled.<n>In particular, we interpret entangling and disentangling power as information retention and forgetting mechanisms in LSTMs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss how quantum recurrent neural networks (RNNs) and their enhanced version, long short-term memory (LSTM) networks, can be modeled using the core ideas presented in Ref.[1], where the entangling and disentangling power of unitary transformations is investigated. In particular, we interpret entangling and disentangling power as information retention and forgetting mechanisms in LSTMs. Therefore, entanglement becomes a key component of the optimization (training) process. We believe that, by leveraging prior knowledge of the entangling power of unitaries, the proposed quantum-classical framework can guide and help to design better-parameterized quantum circuits for various real-world applications.
Related papers
- High-expressibility Quantum Neural Networks using only classical resources [2.349637893207168]
We study the expressibility of parametrized quantum circuit commonly used in QNN applications.<n>We find that high expressibility in QNNs is attainable with purely classical resources.
arXiv Detail & Related papers (2025-06-16T15:29:28Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - A Survey of Quantum Transformers: Architectures, Challenges and Outlooks [82.4736481748099]
Quantum Transformers integrate the representational power of classical Transformers with the computational advantages of quantum computing.<n>Since 2022, research in this area has rapidly expanded, giving rise to diverse technical paradigms and early applications.<n>This paper presents the first comprehensive, systematic, and in-depth survey of quantum Transformer models.
arXiv Detail & Related papers (2025-04-04T05:40:18Z) - The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
We present a novel architecture for dissipative quantum neural networks (DQNNs) in which each building block can implement any quantum channel.<n>We derive a versatile one-to-one parametrization of isometries, allowing for an efficient implementation of the proposed structure.
arXiv Detail & Related papers (2025-02-13T17:38:48Z) - Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning [5.673361333697935]
Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL)<n>We introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL)
arXiv Detail & Related papers (2024-12-12T00:51:41Z) - Quantum Large Language Models via Tensor Network Disentanglers [0.0]
We propose a method to enhance the performance of Large Language Models (LLMs) by integrating quantum computing and quantum-inspired techniques.
Our approach involves replacing the weight matrices in the Self-Attention and Multi-layer Perceptron layers with a combination of two variational quantum circuits and a quantum-inspired tensor network.
arXiv Detail & Related papers (2024-10-22T20:12:04Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.