Transformer-Based Dual-Optical Attention Fusion Crowd Head Point Counting and Localization Network
- URL: http://arxiv.org/abs/2505.06937v1
- Date: Sun, 11 May 2025 10:55:14 GMT
- Title: Transformer-Based Dual-Optical Attention Fusion Crowd Head Point Counting and Localization Network
- Authors: Fei Zhou, Yi Li, Mingqing Zhu,
- Abstract summary: The model designs a dual-optical attention fusion module (DAFP) by introducing complementary information from infrared images.<n>The proposed method outperforms existing techniques in terms of performance, especially in challenging dense low-light scenes.
- Score: 9.214772627896156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the dual-optical attention fusion crowd head point counting model (TAPNet) is proposed to address the problem of the difficulty of accurate counting in complex scenes such as crowd dense occlusion and low light in crowd counting tasks under UAV view. The model designs a dual-optical attention fusion module (DAFP) by introducing complementary information from infrared images to improve the accuracy and robustness of all-day crowd counting. In order to fully utilize different modal information and solve the problem of inaccurate localization caused by systematic misalignment between image pairs, this paper also proposes an adaptive two-optical feature decomposition fusion module (AFDF). In addition, we optimize the training strategy to improve the model robustness through spatial random offset data augmentation. Experiments on two challenging public datasets, DroneRGBT and GAIIC2, show that the proposed method outperforms existing techniques in terms of performance, especially in challenging dense low-light scenes. Code is available at https://github.com/zz-zik/TAPNet
Related papers
- Lightweight RGB-D Salient Object Detection from a Speed-Accuracy Tradeoff Perspective [54.91271106816616]
Current RGB-D methods usually leverage large-scale backbones to improve accuracy but sacrifice efficiency.<n>We propose a Speed-Accuracy Tradeoff Network (SATNet) for Lightweight RGB-D SOD from three fundamental perspectives.<n> Concerning depth quality, we introduce the Depth Anything Model to generate high-quality depth maps.<n>For modality fusion, we propose a Decoupled Attention Module (DAM) to explore the consistency within and between modalities.<n>For feature representation, we develop a Dual Information Representation Module (DIRM) with a bi-directional inverted framework.
arXiv Detail & Related papers (2025-05-07T19:37:20Z) - FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.<n>We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)<n>PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.<n>FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - 2DMCG:2DMambawith Change Flow Guidance for Change Detection in Remote Sensing [4.18306618346671]
This paper proposes an efficient framework based on a Vision Mamba variant that enhances its ability to capture 2D spatial information.<n>The framework employs a 2DMamba encoder to effectively learn global contextual spatial information from multi-temporal images.<n>Experiments on benchmark datasets demonstrate the superior performance of our framework compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-03-01T14:55:13Z) - DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion [21.64382683858586]
Infrared and visible image fusion aims to combine complementary information from both modalities to provide a more comprehensive scene understanding.
We propose a dual-branch feature decomposition fusion network (DAF-Net) with Maximum domain adaptive.
By incorporating MK-MMD, the DAF-Net effectively aligns the latent feature spaces of visible and infrared images, thereby improving the quality of the fused images.
arXiv Detail & Related papers (2024-09-18T02:14:08Z) - Double-Shot 3D Shape Measurement with a Dual-Branch Network for Structured Light Projection Profilometry [14.749887303860717]
We propose a dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet) to process different structured light (SL) modalities.<n>Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images.<n>Our method can reduce fringe order ambiguity while producing high-accuracy results on self-made datasets.
arXiv Detail & Related papers (2024-07-19T10:49:26Z) - Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection [17.406051477690134]
Event cameras output sparse and asynchronous events, providing a potential solution to solve these problems.
We propose a novel hierarchical feature refinement network for event-frame fusion.
Our method exhibits significantly better robustness when introducing 15 different corruption types to the frame images.
arXiv Detail & Related papers (2024-07-17T14:09:46Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
Multi-exposure image fusion (MEF) has emerged as a prominent solution to address the limitations of digital imaging in representing varied exposure levels.
This paper presents a Hybrid-Supervised Dual-Search approach for MEF, dubbed HSDS-MEF, which introduces a bi-level optimization search scheme for automatic design of both network structures and loss functions.
arXiv Detail & Related papers (2023-09-03T08:07:26Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Learning Selective Mutual Attention and Contrast for RGB-D Saliency
Detection [145.4919781325014]
How to effectively fuse cross-modal information is the key problem for RGB-D salient object detection.
Many models use the feature fusion strategy but are limited by the low-order point-to-point fusion methods.
We propose a novel mutual attention model by fusing attention and contexts from different modalities.
arXiv Detail & Related papers (2020-10-12T08:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.