Fermion Doubling in Quantum Cellular Automata
- URL: http://arxiv.org/abs/2505.07900v2
- Date: Thu, 15 May 2025 20:35:37 GMT
- Title: Fermion Doubling in Quantum Cellular Automata
- Authors: Dogukan Bakircioglu, Pablo Arnault, Pablo Arrighi,
- Abstract summary: A Quantum Cellular Automaton (QCA) is essentially an operator driving the evolution of particles on a lattice, through local unitaries.<n>FD is well understood in particular in the discrete-space but continuous-time settings of real-time/Hamiltonian Lattice Gauge Theories (LGTs)<n>We rigorously extend this analysis to the real-time discrete-space and discrete-time schemes that QCAs are.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A Quantum Cellular Automaton (QCA) is essentially an operator driving the evolution of particles on a lattice, through local unitaries. Because $\Delta_x=\Delta_t=\varepsilon$, QCAs constitute a privileged framework to cast the digital quantum simulation of relativistic quantum particles and their interactions with gauge fields, e.g., $(3+1)$D Quantum Electrodynamics (QED). But before they can be adopted, simulation schemes for high-energy physics need prove themselves against specific numerical issues, of which the most infamous is Fermion Doubling (FD). FD is well understood in particular in the discrete-space but continuous-time settings of real-time/Hamiltonian Lattice Gauge Theories (LGTs), as the appearance of spurious solutions for all $\Delta_x=\varepsilon\neq 0$. We rigorously extend this analysis to the real-time discrete-space and discrete-time schemes that QCAs are. We demonstrate the existence of FD issues in QCAs. By applying a covering map on the Brillouin zone, we provide a flavoring-without-staggering way of fixing FD that does not break chiral symmetry. We explain how this method coexists with the Nielsen-Ninomiya no-go theorem, and illustrate this with a neutrino-like QCA.
Related papers
- Topological control of quantum speed limits [55.2480439325792]
We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
arXiv Detail & Related papers (2025-07-21T18:00:07Z) - Approximation of diffeomorphisms for quantum state transfers [49.1574468325115]
We seek to combine two emerging standpoints in control theory.<n>We numerically find control laws driving state transitions in a bilinear Schr"odinger PDE posed on the torus.
arXiv Detail & Related papers (2025-03-18T17:28:59Z) - Quantum Simulation of non-Abelian Lattice Gauge Theories: a variational approach to $\mathbb{D}_8$ [0.0]
We show a procedure that removes the matter and improves the efficiency of the hardware resources.<n>We map the lattice gauge theory onto qudit systems with local interactions.<n>This can serve as a way of simulating lattice gauge theories in high spatial dimensions.
arXiv Detail & Related papers (2025-01-29T18:59:59Z) - Polynomial Time Quantum Gibbs Sampling for Fermi-Hubbard Model at any Temperature [9.62464358196899]
We prove a constant gap of the perturbed Lindbladian corresponding to interacting fermions up to some maximal coupling strength.<n>This is achieved by using theorems about stability of the gap for lattice fermions.<n>As an application, we explain how to calculate partition functions for the considered systems.
arXiv Detail & Related papers (2025-01-02T18:56:02Z) - Simulating $\mathbb{Z}_2$ Lattice Gauge Theory with the Variational
Quantum Thermalizer [0.6165163123577484]
We apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry.
We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.
arXiv Detail & Related papers (2023-06-09T17:32:37Z) - Spin-$S$ $\mathrm{U}(1)$ Quantum Link Models with Dynamical Matter on a
Quantum Simulator [3.1192594881563127]
We present a bosonic mapping for the representation of gauge and electric fields with effective spin-$S$ operators.
We then propose an experimental scheme for the realization of a large-scale spin-$1$ $mathrmU(1)$ QLM using spinless bosons in an optical superlattice.
arXiv Detail & Related papers (2023-05-10T18:00:01Z) - Beyond The Fermi's Golden Rule: Discrete-Time Decoherence Of Quantum
Mesoscopic Devices Due To Bandlimited Quantum Noise [0.0]
We show how to exploit the fact that a quantum noise (QN) acting on a mesoscopic device is usually bandlimited.
The real-time dissipative quantum motion has a natural structure of a discrete-time matrix product state, with a bounded bond dimension.
This leads to a noveltextitbandlimited input-output formalism and to quantum jump Monte Carlo simulation techniques for real-time motion of open quantum systems.
arXiv Detail & Related papers (2022-06-07T00:17:21Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.